The log-exponentiated Weibull regression model for interval-censored data

In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data.

[1]  Jan R. Magnus,et al.  Local Sensitivity and Diagnostic Tests , 2004 .

[2]  Heleno Bolfarine,et al.  Modeling the presence of immunes by using the exponentiated-Weibull model , 2001 .

[3]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[4]  Ronald Christensen,et al.  Case-deletion diagnostics for mixed models , 1992 .

[5]  Heleno Bolfarine,et al.  Deviance residuals in generalised log-gamma regression models with censored observations , 2008 .

[6]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[7]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[8]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[9]  David Collett Modelling Survival Data in Medical Research , 1994 .

[10]  Feng-Chang Xie,et al.  Diagnostics analysis for log-Birnbaum-Saunders regression models , 2007, Comput. Stat. Data Anal..

[11]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[12]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[13]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[14]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[15]  Mauricio Lima Barreto,et al.  Log-Burr XII regression models with censored data , 2008, Comput. Stat. Data Anal..

[16]  Stuart R. Lipsitz,et al.  Using the jackknife to estimate the variance of regression estimators from repeated measures studies , 1990 .

[17]  J. Bert Keats,et al.  The Burr XII Distribution in Reliability Analysis , 1998 .

[18]  Alan D. Hutson,et al.  The exponentiated weibull family: some properties and a flood data application , 1996 .

[19]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[20]  Gilberto A. Paula,et al.  Log-modified Weibull regression models with censored data: Sensitivity and residual analysis , 2008, Comput. Stat. Data Anal..

[21]  C P Farrington,et al.  Residuals for Proportional Hazards Models with Interval‐Censored Survival Data , 2000, Biometrics.

[22]  Francisco Louzada-Neto,et al.  Influence diagnostics for polyhazard models in the presence of covariates , 2008, Stat. Methods Appl..

[23]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[24]  Stephen W. Lagakos,et al.  The graphical evaluation of explanatory variables in proportional hazard regression models , 1981 .

[25]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[26]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[27]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[28]  Vicente G Cancho,et al.  Generalized log-gamma regression models with cure fraction , 2009, Lifetime data analysis.

[29]  M. Nassar,et al.  On the Exponentiated Weibull Distribution , 2003 .

[30]  Saralees Nadarajah,et al.  The exponentiated Gumbel distribution with climate application , 2006 .

[31]  B. Manly Randomization, Bootstrap and Monte Carlo Methods in Biology , 2018 .

[32]  S. Weisberg Plots, transformations, and regression , 1985 .

[33]  R. Cook Assessment of Local Influence , 1986 .

[34]  R. Cook Detection of influential observation in linear regression , 2000 .

[35]  Anthony C. Davison,et al.  Regression model diagnostics , 1992 .

[36]  Luis A. Escobar,et al.  Assessing influence in regression analysis with censored data. , 1992, Biometrics.

[37]  Heleno Bolfarine,et al.  Influence diagnostics in generalized log-gamma regression models , 2003, Comput. Stat. Data Anal..

[38]  Feng-Chang Xie,et al.  Diagnostics analysis in censored generalized Poisson regression model , 2007 .