Orderly spanning trees with applications to graph encoding and graph drawing

The <i>canonical ordering</i> for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the <i>orderly pair</i> of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let <i>G</i> be a connected planar graph. We give a linear-time algorithm that obtains an orderly pair (<i>H</i>,<i>T</i>) of <i>G</i>, where <i>H</i> is a planar embedding of <i>G</i>, and <i>T</i> is an <i>orderly spanning tree</i> of <i>H</i>. As applications, we show that the technique of orderly spanning trees yields (i) the best known encoding of <i>G</i> with query support, and (ii) the first area-optimal 2-visibility drawing of <i>G</i>.

[1]  M Talamo,et al.  Compact implicit representation of graphs (extended abstract) , 1998 .

[2]  Guy Jacobson,et al.  Space-efficient static trees and graphs , 1989, 30th Annual Symposium on Foundations of Computer Science.

[3]  Xin He,et al.  Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses , 1998, ICALP.

[4]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[5]  Peter van Emde Boas,et al.  Machine Models and Simulation , 1990, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[6]  Maurizio Talamo,et al.  Compact Implicit Representation of Graphs , 1998, WG.

[7]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[8]  Mikkel Thorup,et al.  On RAM priority queues , 1996, SODA '96.

[9]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[10]  Xin He,et al.  A Fast General Methodology for Information-Theoretically Optimal Encodings of Graphs , 2000, SIAM J. Comput..

[11]  Goos Kant,et al.  Regular Edge Labeling of 4-Connected Plane Graphs and Its Applications in Graph Drawing Problems , 1997, Theor. Comput. Sci..

[12]  David Harel,et al.  An Algorithm for Straight-Line Drawing of Planar Graphs , 1995, Algorithmica.

[13]  Jeffery R. Westbrook,et al.  Short Encodings of Planar Graphs and Maps , 1995, Discret. Appl. Math..

[14]  P. Boas Machine models and simulations , 1991 .

[15]  Roberto Tamassia,et al.  Reinventing the wheel: an optimal data structure for connectivity queries , 1993, STOC.

[16]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[17]  Xin He,et al.  Linear-Time Succinct Encodings of Planar Graphs via Canonical Orderings , 1999, SIAM J. Discret. Math..

[18]  Venkatesh Raman,et al.  Succinct representation of balanced parentheses, static trees and planar graphs , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[19]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[20]  J. Ian Munro,et al.  Membership in Constant Time and Almost-Minimum Space , 1999, SIAM J. Comput..

[21]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[22]  Goos Kant,et al.  2-Visibility Drawings of Planar Graphs , 1996, GD.

[23]  Michael L. Fredman,et al.  Trans-Dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths , 1994, J. Comput. Syst. Sci..

[24]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[25]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[26]  György Turán,et al.  On the succinct representation of graphs , 1984, Discret. Appl. Math..

[27]  Moni Naor Succinct representation of general unlabeled graphs , 1990, Discret. Appl. Math..

[28]  David Richard Clark,et al.  Compact pat trees , 1998 .

[29]  Xin He,et al.  A Fast General Methodology for Information - Theoretically Optimal Encodings of Graphs , 1999, ESA.

[30]  Mikkel Thorup,et al.  Undirected single source shortest paths in linear time , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[31]  Michael L. Fredman,et al.  Trans-dichotomous algorithms for minimum spanning trees and shortest paths , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[32]  Moni Naor,et al.  Implicit representation of graphs , 1992, STOC '88.