Studying planet populations with Einstein's blip

Although Einstein originally judged that ‘there is no great chance of observing this phenomenon’, the ‘most curious effect’ of the bending of starlight by the gravity of intervening foreground stars—now commonly referred to as ‘gravitational microlensing’—has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy.

[1]  M. Livio The Golden Ratio: The Story of Phi, the World's Most Astonishing Number , 2002 .

[2]  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION . I . A DESERT IN THE MASS AND SEMIMAJOR AXIS DISTRIBUTIONS OF EXTRASOLAR PLANETS , 2004 .

[3]  C. Alcock Gravitational lenses , 1982, Nature.

[4]  J. Stachel,et al.  The Origin of Gravitational Lensing: A Postscript to Einstein's 1936 Science Paper , 1997, Science.

[5]  Byeong-Gon Park,et al.  Microlensing Sensitivity to Earth-Mass Planets in the Habitable Zone , 2006, astro-ph/0602006.

[6]  Neda Safizadeh,et al.  The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets , 1997 .

[7]  M. H. Hart,et al.  Habitable zones about main sequence stars , 1979 .

[8]  P. Vreeswijk,et al.  The 1995 Pilot Campaign of PLANET: Searching for Microlensing Anomalies through Precise, Rapid, Round-the-Clock Monitoring , 1998, astro-ph/9807299.

[9]  D. Fried Probability of getting a lucky short-exposure image through turbulence* , 1978 .

[10]  G. C. Cox,et al.  Diffraction-limited CCD imaging with faint reference stars , 2002, astro-ph/0203470.

[11]  A. Anderson The Displacement of Light Rays Passing near the Sun , 1919, Nature.

[12]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .

[13]  A. Einstein,et al.  Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes , 1911 .

[14]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[15]  Jean Surdej,et al.  Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations , 2010 .

[16]  D. Mouillet,et al.  A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing , 2004 .

[17]  Marcin Kubiak,et al.  The Optical Gravitational Lensing Experiment , 1992 .

[18]  T. A. Lister,et al.  RoboNet-II: Follow-up observations of microlensing events with a robotic network of telescopes , 2008, 0808.0813.

[19]  H. Bondi,et al.  The Gravitational Lens Effect , 1964 .

[20]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[21]  R. D. Ritis,et al.  Detecting planets around stars in nearby galaxies , 1999, astro-ph/9903285.

[22]  Stochastic distributions of lens and source properties for observed galactic microlensing events , 2005, astro-ph/0507540.

[23]  Colin Snodgrass,et al.  A metric and optimization scheme for microlens planet searches , 2009, 0901.0846.

[24]  P. Jetzer,et al.  Pixel lensing as a way to detect extrasolar planets in M31 , 2009, 0906.1050.

[25]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[26]  M. Dominik,et al.  An anomaly detector with immediate feedback to hunt for planets of Earth mass and below by microlensing , 2007, 0706.2566.

[27]  Albert Einstein,et al.  Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie , 2006 .

[28]  K. Ulaczyk,et al.  Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing , 2008, Science.

[29]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[30]  C. Peralta,et al.  Relativistic gravitational deflection of photons , 2002 .

[31]  P. J. Quinn,et al.  Possible gravitational microlensing of a star in the Large Magellanic Cloud , 1993, Nature.

[32]  F. Zwicky Nebulae as gravitational lenses , 1937 .

[33]  V. Belokurov,et al.  ASTROMETRIC MICROLENSING WITH THE GAIA SATELLITE , 2001, Gaia.

[34]  Planetary microlensing at high magnification , 2002, astro-ph/0204478.

[35]  R. Massey,et al.  90 years on – the 1919 eclipse expedition at Príncipe , 2009 .

[36]  F. Dyson,et al.  A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919 , 1920 .

[37]  M. Dominik,et al.  The PLANET microlensing follow-up network: results and prospects for the detection of extra-solar planets , 1999 .

[38]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[39]  B. Gaudi,et al.  Microlensing by Multiple Planets in High-Magnification Events , 1998, astro-ph/9803282.

[40]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[41]  Bohdan Paczynski,et al.  The Optical Gravitational Lensing Experiment. The Early Warning System: Real Time Microlensing , 1994 .

[42]  M. Dominik,et al.  Astrometric Microlensing of Stars , 1998, astro-ph/9805360.

[43]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[44]  P. J. Wheatley,et al.  ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search): a possible expert-system based cooperative effort to hunt for planets of Earth mass and below , 2008, 0801.2162.

[45]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[46]  Bohdan Paczynski,et al.  Gravitational Microlensing in the Local Group , 1996 .

[47]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[48]  George F. R. Ellis,et al.  Schwarzschild black hole lensing , 2000 .

[49]  A. Milsztajn Evidence for gravitational microlensing by dark objects in the Galactic halo , 1994 .

[50]  M. F. Bode,et al.  Exoplanet detection via microlensing with RoboNet-1.0 , 2007 .

[51]  IM,et al.  THE USE OF HIGH-MAGNIFICATION MICROLENSING EVENTS IN DISCOVERING EXTRASOLAR PLANETS , 1998 .

[52]  Bohdan Paczynski,et al.  Gravitational microlensing of the Galactic bulge stars , 1991 .

[53]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[54]  D. Walsh,et al.  0957 + 561 A, B: twin quasistellar objects or gravitational lens? , 1979, Nature.

[55]  M. Dominik The binary gravitational lens and its extreme cases , 1999, astro-ph/9903014.

[56]  Charles F. Lillie,et al.  A Road Map for the Exploration of Neighboring Planetary Systems (ExNPS) , 1996 .

[57]  S. Refsdal,et al.  Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.