Surface movement and cascade processes on debris cones in temperate high mountain (Picos de Europa, northern Spain).

Debris talus is a very common landform in the temperate high mountain, so much so that it is the most representative of the periglacial and nival processes. This work studies debris cones in the Picos de Europa, an Atlantic mountain range in the north of the Iberian Peninsula. A detailed geomorphological map was prepared, fieldwork was carried out on the debris cone surface, the ground and air thermal regime was analyzed, and a five-year Terrestrial Laser Scan survey carried out. Annual volume changes on the surface of the debris cones were detected and related to active processes and sediment transfer. Two different behaviors were observed in each cone. Cone A is linear, with equilibrium between accumulation and sediment transfer, while Cone B is concave-convex denoting accumulation processes in the upper part deriving from the greater frequency of snow avalanches. Changes in morphology surpass 50 cm/year with most of the activity taking place in the highest and lowest areas. The presence and action of the ice on the debris slope are moderate or non-existent and freeze-thaw processes are only active on the walls at over 2000 m a.s.l. The main processes on debris cones are debris flow and creep related to snowcover, but sediment transfer on the slopes involves high intensity-low frequency (debris flow, avalanches) and high frequency-low intensity processes (creep, shift, solifluction and wasting).

[1]  Michel Jaboyedoff,et al.  Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland) , 2009 .

[2]  E. Hauber,et al.  Surface morphology of fans in the high-Arctic periglacial environment of Svalbard : controls and processes. , 2015 .

[3]  I. Statham A scree slope rockfall model , 1976 .

[4]  Anders Rapp,et al.  Recent Development of Mountain Slopes in Kärkevagge and Surroundings, Northern Scandinavia , 1960 .

[5]  A. Bilbao The late Quaternary in the Western Pyrenean region , 1992 .

[6]  C. Lambiel,et al.  Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps , 2011 .

[7]  C. Ballantyne,et al.  The structure and sedimentology of relict talus, Knockan, Assynt, N.W. Scotland , 1997 .

[8]  Arctic and Alpine Environments , 1976 .

[9]  G. Paar,et al.  Terrestrial laser scanning for rock glacier monitoring , 2002 .

[10]  Jeffrey R. Moore,et al.  Influence of rock mass strength on the erosion rate of alpine cliffs , 2009 .

[11]  V. Kaufmann,et al.  Paraglacial Talus Slope Instability in Recently Deglaciated Cirques (Schober Group, Austria) , 2007 .

[12]  A. U.S Géographie physique et Quaternaire Talus fabric, clast morphology, and botanical Indicators of Slope Processes on the Chaos Crags (California Cascades), U.S.A. , 2022 .

[13]  E. Serrano,et al.  Ground temperatures, landforms and processes in an Atlantic mountain. Cantabrian Mountains (Northern Spain) , 2017 .

[14]  E. Serrano,et al.  Quaternary glacial history of the Cantabrian Mountains of northern Spain: a new synthesis , 2016, Special Publications.

[15]  Lothar Schrott,et al.  Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany , 2003 .

[16]  Garry Burton,et al.  TERRESTRIAL LASER SCANNER , 2007 .

[17]  M. Selby,et al.  Hillslope materials and processes , 1982 .

[18]  S. Harris,et al.  Recent research on the nature, origin and climatic relations of blocky and stratified slope deposits , 2002 .

[19]  N. Matsuoka,et al.  Solifluction rates, processes and landforms: a global review , 2001 .

[20]  E. Serrano,et al.  Geomatics techniques applied to glaciers, rock glaciers, and ice patches in spain (1991–2012) , 2014 .

[21]  E. Cañadas,et al.  Morfodinámica periglaciar en el Grupo Peña Vieja (macizo central de los Picos de Europa - Cantabria -) , 2004 .

[22]  J. Roering,et al.  Climate-controlled variations in scree production, Southern Alps, New Zealand , 2005 .

[23]  D. Sanders TALUS ACCUMULATION IN DETACHMENT SCARS OF LATE HOLOCENE ROCK AVALANCHES, EASTERN ALPS (AUSTRIA): RATES AND IMPLICATIONS. , 2012 .

[24]  B. Luckman 7.17 Processes, Transport, Deposition, and Landforms: Rockfall , 2013 .

[25]  B. Luckman,et al.  Rockfalls and rockfall inventory data: Some observations from surprise valley, Jasper National Park, Canada , 1976 .

[26]  Volker Wichmann,et al.  Long‐range terrestrial laser scanning for geomorphological change detection in alpine terrain – handling uncertainties , 2017 .

[27]  V. Jomelli,et al.  Comparing the characteristics of rockfall talus and snow avalanche landforms in an Alpine environment using a new methodological approach: Massif des Ecrins, French Alps , 2000 .

[28]  John Goodier,et al.  Encyclopedia of Snow, Ice and Glaciers , 2012 .

[29]  John Walden,et al.  The structure and sedimentology of relict talus, Trotternish, Northern Skye, Scotland , 1998 .

[30]  C. E. Thorn,et al.  Statistical relationships between daily and monthly air and shallow‐ground temperatures in Kärkevagge, Swedish Lapland , 1999 .

[31]  A. Decaulne,et al.  Debris flow triggered by rapid snowmelt: a case study in the glei .arhjalli area, northwestern iceland , 2005 .

[32]  Oliver Sass,et al.  Determination of the internal structure of alpine talus deposits using different geophysical methods (Lechtaler Alps, Austria) , 2006 .

[33]  Mike J. Smith,et al.  Geomorphological Mapping: Methods and Applications , 2011 .

[34]  Harry M. Blijenberg,et al.  Application of physical modelling of debris flow triggering to field conditions: Limitations posed by boundary conditions , 2007 .

[35]  Sam Savage,et al.  Accounting for Uncertainty , 2002 .

[36]  J. Álvarez,et al.  La alta montaña cantábrica: condiciones térmicas y morfodinámica en los Picos de Europa , 1998 .

[37]  Adrian Harvey Introducing Geomorphology: A Guide to Landforms and Processes , 2012 .

[38]  A. Decaulne,et al.  Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords , 2006 .

[39]  E. Serrano,et al.  Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe) , 2012, Quaternary Research.

[40]  G. Wieczorek,et al.  Investigation and hazard assessment of the 2003 and 2007 Staircase Falls rock falls, Yosemite National Park, California, USA , 2008 .

[41]  Joachim Götz,et al.  Postglacial sediment storage and rockwall retreat in a semi-closed inner-alpine sedimentary basin (Gradenmoos, Hohe Tauern, Austria) , 2013 .

[42]  E. Serrano,et al.  Morfodinámica periglaciar en el Grupo Peña Vieja (Macizo Central de los Picos de Europa - Cantabria) , 2012 .

[43]  J. Marquínez Síntesis cartográfica de la Región del Cuera y los Picos de Europa , 1989 .

[44]  F. L. Pérez TALUS FABRIC, CLAST MORPHOLOGY, AND BOTANICAL INDICATORS OF SLOPE PROCESSES ON THE CHAOS CRAGS (CALIFORNIA CASCADES), U.S.A. , 2002 .

[45]  Hugh M. French,et al.  The Periglacial Environment , 1977 .

[46]  O. Korup,et al.  Sediment Cascades in Active Landscapes , 2010 .

[47]  J. Álvarez,et al.  El periglaciarismo de la Cordillera Cantábrica , 1994 .

[48]  M. Becht,et al.  Investigating Sediment Cascades Using Field Measurements and Spatial Modelling , 2005 .

[49]  A. Decaulne,et al.  Distribution and frequency of snow‐avalanche debris transfer in the distal part of colluvial cones in central north iceland , 2010 .

[50]  D. Petley,et al.  Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion , 2005, Quarterly Journal of Engineering Geology and Hydrogeology.

[51]  H Newlon,et al.  Freezing and Thawing , 1994 .

[52]  F. L. Pérez The movement of debris on a high Andean talus , 1988 .

[53]  R. Dikau,et al.  Towards a uniform concept for the comparison and extrapolation of rockwall retreat and rockfall supply , 2007 .

[54]  E. Serrano,et al.  Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain) , 2013 .

[55]  J. Kramers,et al.  Quaternary carbonate-rocky talus slope successions (Eastern Alps, Austria): sedimentary facies and facies architecture , 2009 .

[56]  B. Francou Pentes, Granulométrie et Mobilité des Matériaux le long d'un Talus d'Eboulis en Milieu Alpin , 1991 .

[57]  P. Sadler Sediment Accumulation Rates and the Completeness of Stratigraphic Sections , 1981, The Journal of Geology.

[58]  Rolf Nyberg,et al.  Alpine Debris Flows in Northern Scandinavia: Morphology and dating by lichenometry , 1981 .

[59]  Observations on Erosion by Wet Snow Avalanches, Mount Rae Area, Alberta, Canada , 1983 .

[60]  J. Gardner Accretion rates on some debris slopes in the Mt. Rae area, Canadian Rocky Mountains , 1983 .

[61]  B. Luckman Debris Accumulation Patterns on Talus Slopes in Surprise Valley, Alberta , 2007 .

[62]  N. Caine A Model for Alpine Talus Slope Development by Slush Avalanching , 1969, The Journal of Geology.

[63]  M. Leeder Sedimentology: Process and Product , 1982 .

[64]  L. King,et al.  Microclimate within coarse debris of talus slopes in the alpine periglacial belt and its effect on permafrost , 2002 .

[65]  Ian Statham,et al.  Surface Stone Movement and Scree Formation , 1975, The Journal of Geology.

[66]  J. Gardner Debris slope form and processes in the Lake Louise district : a high mountain area. , 1968 .

[67]  J. Brasington,et al.  Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets , 2009 .

[68]  C. Lambiel,et al.  Thermal anomaly in a cold scree slope (Creux du Van, Switzerland) , 2003 .