An Euler Relation for Valuations on Polytopes

Abstract A locally finite point set (such as the set Z n of integral points) gives rise to a lattice of polytopes in Euclidean space taking vertices from the given point set. We develop the combinatorial structure of this polytope lattice and derive Euler-type relations for valuations on polytopes using the language of Mobius inversion. In this context a new family of inversion relations is obtained, thereby generalizing classical relations of Euler, Dehn–Sommerville, and Macdonald.

[1]  Chih-Han Sah,et al.  Hilbert's Third Problem: Scissors Congruence , 1979 .

[2]  Daniel A. Klain Free polygon enumeration and the area of an integral polygon , 2000, Discret. Math..

[3]  Victor Reiner,et al.  Counting The Interior Of A Point Configuration , 2000 .

[4]  Gary Gordon,et al.  Convexity and the Beta Invariant , 1999, Discret. Comput. Geom..

[5]  R. Stanley Combinatorics and commutative algebra , 1983 .

[6]  L. Santaló Integral geometry and geometric probability , 1976 .

[7]  R. Stanley Flagf-vectors and thecd-index , 1994 .

[8]  G. Ewald Combinatorial Convexity and Algebraic Geometry , 1996 .

[9]  G. T. Sallee Polytopes, Valuations, and the Euler Relation , 1968, Canadian Journal of Mathematics.

[10]  P Mcmullen,et al.  Non-linear angle-sum relations for polyhedral cones and polytopes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  P. McMullen The polytope algebra , 1989 .

[12]  Joseph P. S. Kung,et al.  Gian-Carlo Rota on combinatorics : introductory papers and commentaries , 1995 .

[13]  Richard Ehrenborg,et al.  The r-cubical Lattice and a Generalization of the cd-index , 1996, Eur. J. Comb..

[14]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[15]  H. Groemer,et al.  ON THE EXTENSION OF ADDITIVE FUNCTIONALS ON CLASSES OF CONVEX SETS , 1978 .

[16]  U. Betke,et al.  Zerlegungen und Bewertungen von Gitterpolytopen. , 1985 .

[17]  Jörg M. Wills,et al.  Convexity and its applications , 1983 .

[18]  R. Stanley,et al.  Combinatorial reciprocity theorems , 1974 .

[19]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[20]  V. Klee A Combinatorial Analogue of Poincaré's Duality Theorem , 1964, Canadian Journal of Mathematics.

[21]  Louis J. Billera,et al.  Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets , 1985 .

[22]  Daniel A. Klain A short proof of Hadwiger's characterization theorem , 1995 .

[23]  G. Ziegler Lectures on Polytopes , 1994 .

[24]  Antonio Córdoba,et al.  Lattice points , 1997 .

[25]  Paul H. Edelman,et al.  The theory of convex geometries , 1985 .

[26]  Daniel A. Klain Kinematic formulas for finite vector spaces , 1998, Discret. Math..

[27]  Andrew Klapper,et al.  A new index for polytopes , 1991, Discret. Comput. Geom..

[28]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[29]  P. McMullen Valuations and Euler-Type Relations on Certain Classes of Convex Polytopes , 1977 .

[30]  Beifang Chen The Geometric Dehn-Sommerville Relations , 1996, J. Comb. Theory, Ser. A.

[31]  Peter McMullen,et al.  Valuations on convex bodies , 1983 .

[32]  P. McMullen Valuations and Dissections , 1993 .

[33]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[34]  B. M. Fulk MATH , 1992 .

[35]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[36]  I. G. MacDonald,et al.  Polynomials Associated with Finite Gell-Complexes , 1971 .

[37]  Rolf Schneider,et al.  Simple valuations on convex bodies , 1996 .

[38]  P. McMullen INTRODUCTION TO GEOMETRIC PROBABILITY , 1999 .

[39]  Daniel A. Klain Kinematic formulas for finite lattices , 1997 .