Discovering Noncritical Organization: Statistical Mechanical, Information Theoretic, and Computational Views of Patterns in One-Dimensional Spin Systems

We compare and contrast three different, but complementary views of “structure” and “pattern” in spatial processes. For definiteness and analytical clarity, we apply all three approaches to the simplest class of spatial processes: one-dimensional Ising spin systems with finite-range interactions. These noncritical systems are well-suited for this study since the change in structure as a function of system parameters is more subtle than that found in critical systems where, at a phase transition, many observables diverge, thereby making the detection of change in structure obvious. This survey demonstrates that the measures of pattern from information theory and computational mechanics differ from known thermodynamic and statistical mechanical functions. Moreover, they capture important structural features that are otherwise missed. In particular, a type of mutual information called the excess entropy—an information theoretic measure of memory—serves to detect ordered, low entropy density patterns. It is superior in several respects to other functions used to probe structure, such as magnetization and structure factors. ϵ-Machines—the main objects of computational mechanics—are seen to be the most direct approach to revealing the (group and semigroup) symmetries possessed by the spatial patterns and to estimating the minimum amount of memory required to reproduce the configuration ensemble, a quantity known as the statistical complexity. Finally, we argue that the information theoretic and computational mechanical analyses of spatial patterns capture the intrinsic computational capabilities embedded in spin systems—how they store, transmit, and manipulate configurational information to produce spatial structure.

[1]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[2]  James P. Crutchfield,et al.  dit: a Python package for discrete information theory , 2018, J. Open Source Softw..

[3]  James P. Crutchfield,et al.  Spectral Simplicity of Apparent Complexity, Part II: Exact Complexities and Complexity Spectra , 2017, Chaos.

[4]  James P. Crutchfield,et al.  Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction , 2018, Chaos.

[5]  James P. Crutchfield,et al.  Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems , 2017, Entropy.

[6]  Sarah Rothstein,et al.  Introduction To Statistical Mechanics , 2016 .

[7]  R. Horgan,et al.  Statistical Field Theory , 2014 .

[8]  D. Feldman,et al.  Local entropy and structure in a two-dimensional frustrated system. , 2011, Chaos.

[9]  James P. Crutchfield,et al.  Anatomy of a Bit: Information in a Time Series Observation , 2011, Chaos.

[10]  V. Parmon,et al.  Entropy and Information , 2009 .

[11]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009, Complex..

[12]  Carl S. McTague,et al.  The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. , 2008, Chaos.

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  David Joyner,et al.  Applied Abstract Algebra , 2004 .

[15]  J. Crutchfield,et al.  Structural information in two-dimensional patterns: entropy convergence and excess entropy. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[17]  James Odell,et al.  Between order and chaos , 2011, Nature Physics.

[18]  A. U.S.,et al.  Predictability , Complexity , and Learning , 2002 .

[19]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[20]  James P. Crutchfield Critical Computation, Phase Transitions, and Hierarchical Learning , 2001 .

[21]  J. Kurths,et al.  Complexity of two-dimensional patterns , 2000 .

[22]  J. Crutchfield Is anything ever new?: considering emergence , 1999 .

[23]  James P. Crutchfield,et al.  Statistical Dynamics of the Royal Road Genetic Algorithm , 1999, Theor. Comput. Sci..

[24]  J. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[25]  J. Crutchfield,et al.  Thermodynamic depth of causal states: Objective complexity via minimal representations , 1999 .

[26]  Reynaldo D. Pinto,et al.  Inferring statistical complexity in the dripping faucet experiment , 1998 .

[27]  James P. Crutchfield,et al.  Thermodynamic Depth of Causal States: When Paddling Around in Occam's Pool Shallowness Is a Virtue , 1998, cond-mat/9808147.

[28]  Daniel Ray Upper,et al.  Theory and algorithms for hidden Markov models and generalized hidden Markov models , 1998 .

[29]  J. Crutchfield,et al.  Measures of statistical complexity: Why? , 1998 .

[30]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[31]  David P. Feldman,et al.  Computational mechanics of classical spin systems , 1998 .

[32]  Michael I. Jordan Graphical Models , 2003 .

[33]  Melanie Mitchell,et al.  Finite populations induce metastability in evolutionary search , 1997 .

[34]  Alexander B. Neiman,et al.  Characterizing the dynamics of stochastic bistable systems by measures of complexity , 1997 .

[35]  R. Badii,et al.  Complexity: Hierarchical Structures and Scaling in Physics , 1997 .

[36]  James P. Crutchfield,et al.  Computational mechanics of cellular automata: an example , 1997 .

[37]  Ricard V. Solé,et al.  Collective-Induced Computation , 1997 .

[38]  J. Crutchfield,et al.  Statistical complexity of simple one-dimensional spin systems , 1997, cond-mat/9702191.

[39]  Antonio Politi,et al.  Thermodynamics and Complexity of Cellular Automata , 1997 .

[40]  S. Nagel,et al.  SELF-ORGANIZED SHORT-TERM MEMORIES , 1996, cond-mat/9606223.

[41]  Harald Atmanspacher,et al.  Statistics and meta-statistics in the concept of complexity , 1997 .

[42]  Jürgen Schürmann,et al.  Pattern classification , 2008 .

[43]  Ebeling,et al.  Self-similar sequences and universal scaling of dynamical entropies. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Seth Lloyd,et al.  Information measures, effective complexity, and total information , 1996, Complex..

[45]  Callan,et al.  Field Theories for Learning Probability Distributions. , 1996, Physical review letters.

[46]  Osamu Yamakawa,et al.  Mutual information of ising systems , 1996 .

[47]  Nagel,et al.  Particle hopping models and traffic flow theory. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  M. Raijmakers Epigenesis in Neural Network Models of Cognitive Development: bifurcations, more powerful structures and cognitive concepts , 1996 .

[49]  Dirk V. Arnold,et al.  Information-theoretic Analysis of Phase Transitions , 1996, Complex Syst..

[50]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[51]  Jordi Bascompte,et al.  Phase transitions and complex systems , 1995 .

[52]  Saad,et al.  On-line learning in soft committee machines. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  Paczuski,et al.  Emergent traffic jams. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[55]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[56]  J. Kurths,et al.  A Comparative Classification of Complexity Measures , 1994 .

[57]  J. Crutchfield,et al.  Turbulent pattern bases for cellular automata , 1993 .

[58]  G. A. Baker A Markov-property Monte Carlo method: One-dimensional Ising model , 1993 .

[59]  T. Watkin,et al.  THE STATISTICAL-MECHANICS OF LEARNING A RULE , 1993 .

[60]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[61]  J. Crutchfield,et al.  Fluctuation Spectroscopy , 1993 .

[62]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[63]  Mainieri Thermodynamic zeta functions for Ising models with long-range interactions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[64]  J. Crutchfield,et al.  The attractor—basin portrait of a cellular automaton , 1992 .

[65]  G. Parmigiani Large Deviation Techniques in Decision, Simulation and Estimation , 1992 .

[66]  Ronnie Mainieri,et al.  Cycle expansion for the Lyapunov exponent of a product of random matrices. , 1992, Chaos.

[67]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[68]  J. Crutchfield Semantics and Thermodynamics , 1992 .

[69]  Characteristic quantities of multifractals—application to the Feigenbaum attractor , 1991 .

[70]  Karl Allen Young The Grammar and Statistical Mechanics of Complex Physical Systems , 1991 .

[71]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[72]  Wentian Li,et al.  On the Relationship between Complexity and Entropy for Markov Chains and Regular Languages , 1991, Complex Syst..

[73]  James P. Crutchfield,et al.  Computation at the Onset of Chaos , 1991 .

[74]  Wentian Li Mutual information functions versus correlation functions , 1990 .

[75]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[76]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[77]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[78]  Yoshitsugu Oono,et al.  Large Deviation and Statistical Physics , 1989 .

[79]  Szépfalusy,et al.  Singularities in Rényi information as phase transitions in chaotic states. , 1989, Physical review. A, General physics.

[80]  J. Glenn Brookshear,et al.  Theory of Computation: Formal Languages, Automata, and Complexity , 1989 .

[81]  K. Lindgren Entropy and Correlations in Dynamical Lattice Systems , 1989 .

[82]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[83]  S. Lloyd,et al.  Complexity as thermodynamic depth , 1988 .

[84]  Lindgren Microscopic and macroscopic entropy. , 1988, Physical review. A, General physics.

[85]  Rolf Landauer,et al.  A simple measure of complexity , 1988, Nature.

[86]  Mats G. Nordahl,et al.  Complexity Measures and Cellular Automata , 1988, Complex Syst..

[87]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[88]  Gregory J. Chaitin,et al.  Information, Randomness and Incompleteness , 1987 .

[89]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[90]  Moshe Koppel,et al.  Complexity, Depth, and Sophistication , 1987, Complex Syst..

[91]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[92]  Tad Hogg,et al.  Complexity and adaptation , 1986 .

[93]  P. Grassberger Toward a quantitative theory of self-generated complexity , 1986 .

[94]  Charles H. Bennett,et al.  On the nature and origin of complexity in discrete, homogeneous, locally-interacting systems , 1986 .

[95]  Györgyi,et al.  Entropy decay as a measure of stochasticity in chaotic systems. , 1986, Physical review. A, General physics.

[96]  Abraham Lempel,et al.  Compression of two-dimensional data , 1986, IEEE Trans. Inf. Theory.

[97]  S. Wolfram,et al.  Two-dimensional cellular automata , 1985 .

[98]  Selim Tuncel,et al.  Finitary measures for subshifts of finite type and sofic systems , 1985 .

[99]  Wilbur Richard Knorr,et al.  The Ancient Tradition of Geometric Problems , 1985 .

[100]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[101]  Robert Shaw,et al.  The Dripping Faucet As A Model Chaotic System , 1984 .

[102]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[103]  A. N. Kolmogorov Combinatorial foundations of information theory and the calculus of probabilities , 1983 .

[104]  N. Packard,et al.  Symbolic dynamics of noisy chaos , 1983 .

[105]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[106]  N. Packard,et al.  Symbolic dynamics of one-dimensional maps: Entropies, finite precision, and noise , 1982 .

[107]  James P. Crutchfield,et al.  Noise Scaling of Symbolic Dynamics Entropies , 1982 .

[108]  Norman H. Packard Measurements of Chaos in the Presence of Noise. , 1982 .

[109]  M. Rahe,et al.  Finitary codings and weak Bernoulli partitions , 1979 .

[110]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[111]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[112]  C. Thompson The Statistical Mechanics of Phase Transitions , 1978 .

[113]  A. Brudno Entropy and the complexity of the trajectories of a dynamical system , 1978 .

[114]  Ralph Baierlein,et al.  Atoms and information theory: An introduction to statistical mechanics , 1971 .

[115]  J. Dobson Many‐Neighbored Ising Chain , 1969 .

[116]  渡辺 慧,et al.  Knowing and guessing : a quantitative study of inference and information , 1969 .

[117]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[118]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[119]  Elliott H. Lieb,et al.  Two-Dimensional Ising Model as a Soluble Problem of Many Fermions , 1964 .

[120]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[121]  A. Rényi On the dimension and entropy of probability distributions , 1959 .

[122]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[123]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[124]  B. McMillan The Basic Theorems of Information Theory , 1953 .

[125]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .