Symbolic linearization and vibration analysis of constrained multibody systems

A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.

[1]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[2]  J. Hale Oscillations in Nonlinear Systems , 1963 .

[3]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[4]  V. N. Sohoni,et al.  Automatic Linearization of Constrained Dynamical Models , 1986 .

[5]  E. Raghavacharyulu,et al.  Vibratory response of an elastic coupler of a four-bar linkage , 1987 .

[6]  Hans Dresig,et al.  Dynamik der Mechanismen , 1989 .

[7]  E. J. Haug,et al.  Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods , 1989 .

[8]  O. Wallrapp Linearized Flexible Multibody Dynamics Including Geometric Stiffening Effects , 1991 .

[9]  W. Schiehlen,et al.  A projective criterion to the coordinate partitioning method for multibody dynamics , 1994, Archive of Applied Mechanics.

[10]  J. Trom,et al.  Automated linearization of nonlinear coupled differential and algebraic equations , 1994 .

[11]  T. Lin,et al.  Recursive Linearization of Multibody Dynamics and Application to Control Design , 1994 .

[12]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems , 1994 .

[13]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[14]  Peter Lugner,et al.  Systemdynamik und Regelung von Fahrzeugen , 1994 .

[15]  David Rakhmilʹevich Merkin,et al.  Introduction to the Theory of Stability , 1996 .

[16]  João Figueiredo,et al.  Surface polishing with flexible link manipulators , 1996 .

[17]  K. Gupta,et al.  On mathematical modelling for the elastic coupler response of a planar four-bar linkage with possible speed perturbation at crank , 1998 .

[18]  J. N. Reddy,et al.  Energy principles and variational methods in applied mechanics , 2002 .

[19]  J. Lee,et al.  Force Equilibrium Approach for Linearization of Constrained Mechanical System Dynamics , 2003 .

[20]  Liqun Chen,et al.  Symbolic Linearization of Differential/Algebraic Equations Based on Cartesian Coordinates , 2005 .

[21]  P. Frise,et al.  Linearizing the Equations of Motion for Multibody Systems Using an Orthogonal Complement Method , 2005 .

[22]  D. Negrut,et al.  A Practical Approach for the Linearization of the Constrained Multibody Dynamics Equations , 2006 .

[23]  Juan C. Jiménez,et al.  A higher order local linearization method for solving ordinary differential equations , 2007, Appl. Math. Comput..

[24]  Andreas Pott,et al.  A simplified force-based method for the linearization and sensitivity analysis of complex manipulation systems , 2007 .

[25]  Arend L. Schwab,et al.  Dynamics of Multibody Systems , 2007 .

[26]  Van Khang Nguyen,et al.  Linearization and parametric vibration analysis of some applied problems in multibody systems , 2009 .

[27]  Nguyen Van Khang Consistent definition of partial derivatives of matrix functions in dynamics of mechanical systems , 2010 .

[28]  Hongping Hu,et al.  Vibration Calculation of Spatial Multibody Systems Based on Constraint-Topology Transformation , 2011 .

[29]  Nguyen Van Khang,et al.  Kronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multibody systems , 2011 .

[30]  Nguyen Phong Dien,et al.  Parametric Vibration Analysis of Transmission Mechanisms Using Numerical Methods , 2012 .

[31]  M. Hubbard,et al.  Symbolic linearization of equations of motion of constrained multibody systems , 2015 .

[32]  Nguyen Phong Dien,et al.  An efficient numerical procedure for calculating periodic vibrations of elastic mechanisms , 2016 .

[33]  J. Cuadrado,et al.  On the Linearization of Multibody Dynamics Formulations , 2016 .

[34]  J. Cuadrado,et al.  Assessment of Linearization Approaches for Multibody Dynamics Formulations , 2017 .