Secondary Structure-Driven Hydrogelation Using Foldable Telechelic Polymer-Peptide Conjugates.

The synthesis of ABA and ABA' triblock polyethylene glycol-and polysarcosine-peptide conjugates is reported. The A/A' peptides are based on phenylalanine(F)-histidine(H) pentapeptide sequences FHFHF, which promote pH-switchable β-sheet self-assembly into nanorods in water. Only parallel β-sheet-driven folding and intermolecular assembly using ABA triblock polymer-peptide conjugates leads to interstrand cross-linking and hydrogelation, highlighting the impact of supramolecular interactions-directed structure formation at the nano- and mesoscopic level.

[1]  Jun Ling,et al.  Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications , 2018, Progress in Polymer Science.

[2]  K. Fischer,et al.  Solution Properties of Polysarcosine: From Absolute and Relative Molar Mass Determinations to Complement Activation , 2018 .

[3]  P. Besenius,et al.  Folding induced supramolecular assembly into pH-responsive nanorods with a protein repellent shell. , 2018, Chemical communications.

[4]  M. Weck,et al.  Supramolecular Multiblock Copolymers Featuring Complex Secondary Structures. , 2017, Journal of the American Chemical Society.

[5]  K. Kataoka,et al.  Secondary-Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Cross-Linked Nanostructures. , 2017, Angewandte Chemie.

[6]  M. Sawamoto,et al.  Self-Folding Polymer Iron Catalysts for Living Radical Polymerization , 2017 .

[7]  P. Besenius,et al.  Tuning the pH-Switch of Supramolecular Polymer Carriers for siRNA to Physiologically Relevant pH. , 2017, Macromolecular bioscience.

[8]  Erik B. Berda,et al.  What Is Next in Single-Chain Nanoparticles? , 2016 .

[9]  P. Besenius,et al.  pH-switchable self-assembled materials. , 2015, Macromolecular rapid communications.

[10]  Feng Chen,et al.  pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies , 2014, Journal of the American Chemical Society.

[11]  J. V. van Hest,et al.  Synthesis and self-assembly of well-defined elastin-like polypeptide-poly(ethylene glycol) conjugates. , 2014, Biomacromolecules.

[12]  John B. Matson,et al.  Internal Dynamics of a Supramolecular Nanofiber , 2014, Nature materials.

[13]  S. Stupp,et al.  Supramolecular Chemistry and Self-Assembly in Organic Materials Design , 2014 .

[14]  S. Stupp,et al.  Precision templating with DNA of a virus-like particle with peptide nanostructures. , 2013, Journal of the American Chemical Society.

[15]  M. Tirrell,et al.  pH-responsive branched peptide amphiphile hydrogel designed for applications in regenerative medicine with potential as injectable tissue scaffolds , 2012 .

[16]  M. Zamfir,et al.  Controlled folding of polystyrene single chains: design of asymmetric covalent bridges , 2012 .

[17]  C. Barner‐Kowollik,et al.  Bioinspired dual self-folding of single polymer chains via reversible hydrogen bonding , 2012 .

[18]  R. Gillies,et al.  Drug resistance and cellular adaptation to tumor acidic pH microenvironment. , 2011, Molecular pharmaceutics.

[19]  I. Hamley,et al.  A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides. , 2011, Macromolecular bioscience.

[20]  D. Pochan,et al.  Zinc-triggered hydrogelation of a self-assembling β-hairpin peptide. , 2011, Angewandte Chemie.

[21]  U. Schubert,et al.  Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. , 2010, Angewandte Chemie.

[22]  I. Hamley,et al.  Self-assembly of PEGylated peptide conjugates containing a modified amyloid beta-peptide fragment. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[23]  H. Börner Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences , 2009 .

[24]  S. Armes,et al.  The effect of PEO length on the self-assembly of poly(ethylene oxide)-tetrapeptide conjugates prepared by "Click" chemistry. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[25]  E. W. Meijer,et al.  Metastable supramolecular polymer nanoparticles via intramolecular collapse of single polymer chains. , 2009, Journal of the American Chemical Society.

[26]  S. Armes,et al.  Soft hydrogels from nanotubes of poly(ethylene oxide)-tetraphenylalanine conjugates prepared by click chemistry. , 2009, Langmuir.

[27]  I. Hamley,et al.  Multiple Lyotropic Polymorphism of a Poly(ethylene glycol)‐Peptide Conjugate in Aqueous Solution , 2008 .

[28]  Karl Fischer,et al.  Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. , 2008, Journal of the American Chemical Society.

[29]  H. Börner,et al.  Bioinspired functional block copolymers. , 2007, Soft matter.

[30]  Rein V. Ulijn,et al.  Peptide-based stimuli-responsive biomaterials. , 2006, Soft matter.

[31]  E. Chaikof,et al.  Micelle density regulated by a reversible switch of protein secondary structure. , 2006, Journal of the American Chemical Society.

[32]  H. Börner,et al.  Rational design of oligopeptide organizers for the formation of poly(ethylene oxide) nanofibers. , 2005, Chemical communications.

[33]  I. Hamley,et al.  Solution self-assembly of hybrid block copolymers containing poly(ethylene glycol) and amphiphilic beta-strand peptide sequences. , 2005, Biomacromolecules.

[34]  Lisa Pakstis,et al.  Stimuli-responsive polypeptide vesicles by conformation-specific assembly , 2004, Nature materials.

[35]  R. Jayakumar,et al.  Spectroscopic investigation on gel-forming beta-sheet assemblage of peptide derivatives. , 2003, Biopolymers.

[36]  H. Klok,et al.  Reversible self-organization of poly(ethylene glycol)-based hybrid block copolymers mediated by a De Novo four-stranded α-helical coiled coil motif , 2003 .

[37]  O. Mykhaylyk,et al.  Nanoscale structure of poly(ethylene glycol) hybrid block copolymers containing amphiphilic beta-strand peptide sequences. , 2003, Biomacromolecules.

[38]  Lisa Pakstis,et al.  Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. , 2002, Journal of the American Chemical Society.

[39]  David J. Pine,et al.  Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles , 2002, Nature.

[40]  J. V. Hest,et al.  Protein-based materials, toward a new level of structural control. , 2001, Chemical communications.

[41]  Sébastien Lecommandoux,et al.  Supramolecular Materials via Block Copolymer Self-Assembly , 2001 .

[42]  T. Benzinger,et al.  Self-Assembly of Aβ(10-35)-PEG Block Copolymer Fibrils , 1999 .

[43]  T. Benzinger,et al.  C-Terminal PEG Blocks the Irreversible Step in β-Amyloid(10-35) Fibrillogenesis , 1998 .

[44]  Jeffery E. Raymond,et al.  Tunable mechano-responsive organogels by ring-opening copolymerizations of N-carboxyanhydrides. , 2014, Chemical science.

[45]  Sergio Grinstein,et al.  Sensors and regulators of intracellular pH , 2010, Nature Reviews Molecular Cell Biology.