Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity

[1]  F. Schmidt-Kaler,et al.  Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity , 2020, Applied Physics B.

[2]  V. G. Truong,et al.  Fabrication of optical nanofibre-based cavities using focussed ion-beam milling: a review , 2020, Applied Physics B.

[3]  Matthew E. Trusheim,et al.  Quantum nanophotonics with group IV defects in diamond , 2019, Nature Communications.

[4]  R. Warburton,et al.  Cavity-Enhanced Raman Scattering for In Situ Alignment and Characterization of Solid-State Microcavities , 2019, Physical Review Applied.

[5]  P. Stroganov,et al.  An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond , 2019, Physical Review B.

[6]  P. Stroganov,et al.  Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface. , 2019, Physical review letters.

[7]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[8]  F. Jelezko,et al.  Engineering preferentially-aligned nitrogen-vacancy centre ensembles in CVD grown diamond , 2019, Scientific Reports.

[9]  R. Hanson,et al.  Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes , 2019, Nano letters.

[10]  D. Hunger,et al.  Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity , 2018, Physical Review B.

[11]  Noel H. Wan,et al.  Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. , 2018, Physical review letters.

[12]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[13]  E. Neu,et al.  Optimized single-crystal diamond scanning probes for high sensitivity magnetometry , 2018, New Journal of Physics.

[14]  C. Becher,et al.  Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds , 2018, New Journal of Physics.

[15]  R. Hanson,et al.  Optimal design of diamond-air microcavities for quantum networks using an analytical approach , 2018, New Journal of Physics.

[16]  W. Alt,et al.  Strong Purcell Effect on a Neutral Atom Trapped in an Open Fiber Cavity. , 2018, Physical review letters.

[17]  D. Hunger,et al.  Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:Y2O3 , 2018, New Journal of Physics.

[18]  Marko Loncar,et al.  Strain engineering of the silicon-vacancy center in diamond , 2018, Physical Review B.

[19]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[20]  L. Hollenberg,et al.  Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond , 2017, 1711.04429.

[21]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[22]  M. Markham,et al.  All-Optical Control of the Silicon-Vacancy Spin in Diamond at Millikelvin Temperatures. , 2017, Physical review letters.

[23]  L. Childress,et al.  High mechanical bandwidth fiber-coupled Fabry-Perot cavity. , 2017, Optics express.

[24]  Steven Chu,et al.  Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond. , 2017, Nano letters.

[25]  L. Childress,et al.  A High-Mechanical Bandwidth Fabry-Perot Fiber Cavity , 2017, 1706.09843.

[26]  Daniel Riedel,et al.  Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond , 2017, 1703.00815.

[27]  Christoph Becher,et al.  Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond , 2016, 1612.05509.

[28]  Simon Schmitt,et al.  Qudi: A modular python suite for experiment control and data processing , 2016, SoftwareX.

[29]  Alain Brenier,et al.  Lasing with conical diffraction feature in the KGd(WO4)2:Nd biaxial crystal , 2016 .

[30]  D. Hunger,et al.  Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity , 2016, 1606.00167.

[31]  Patrik Rath,et al.  Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows. , 2016, Nano letters.

[32]  Patrick Maletinsky,et al.  Fabrication of all diamond scanning probes for nanoscale magnetometry. , 2016, The Review of scientific instruments.

[33]  K. Ganesan,et al.  Scalable fabrication of high-quality, ultra-thin single crystal diamond membrane windows. , 2016, Nanoscale.

[34]  Mikhail D. Lukin,et al.  Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation , 2015, 1512.03820.

[35]  S. V. Nagaraj,et al.  Review of , 2013, SIGACT News.

[36]  L. Childress,et al.  A Fabry-Perot Microcavity for Diamond-Based Photonics , 2015, 1508.06588.

[37]  D. Meschede,et al.  High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis , 2015, 1508.05289.

[38]  F. Schmidt-Kaler,et al.  A quantum repeater node with trapped ions: a realistic case example , 2015, 1508.05272.

[39]  Toshiro Inubushi,et al.  Germanium-Vacancy Single Color Centers in Diamond , 2015, Scientific Reports.

[40]  D. Hunger,et al.  Transverse-mode coupling and diffraction loss in tunable Fabry–Pérot microcavities , 2015, 1502.01532.

[41]  Neil B. Manson,et al.  Electron–phonon processes of the silicon-vacancy centre in diamond , 2014, 1411.2871.

[42]  M. Atatüre,et al.  Direct photonic coupling of a semiconductor quantum dot and a trapped ion. , 2014, Physical review letters.

[43]  Philip Hemmer,et al.  All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. , 2014, Physical review letters.

[44]  Michal Lipson,et al.  Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit , 2014, Physical Review X.

[45]  Christian Hepp,et al.  All-optical formation of coherent dark states of silicon-vacancy spins in diamond. , 2014, Physical review letters.

[46]  S. Gsell,et al.  Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. , 2014, Nano letters.

[47]  R. Blatt,et al.  Integrated fiber-mirror ion trap for strong ion-cavity coupling. , 2013, The Review of scientific instruments.

[48]  J. Ziegler The stopping and range of ions in solids vol 1 : The stopping and ranges of ions in matter , 2013 .

[49]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[50]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[51]  Kristian Lauritsen,et al.  Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution , 2013, 1310.1220.

[52]  M. Markham,et al.  Extending spin coherence times of diamond qubits by high-temperature annealing , 2013, 1309.4316.

[53]  C. Becher,et al.  Coupling of a single N-V center in diamond to a fiber-based microcavity , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[54]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[55]  Martin Fischer,et al.  Low-temperature investigations of single silicon vacancy colour centres in diamond , 2012, 1210.3201.

[56]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[57]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[58]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[59]  D. Hunger,et al.  Laser micro-fabrication of concave, low-roughness features in silica , 2011, 1109.5047.

[60]  M. Markham,et al.  Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing , 2011 .

[61]  Yifan Hu,et al.  SOLOMON , 2010 .

[62]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[63]  J. Rarity,et al.  Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses , 2010, 1006.2093.

[64]  A. Meldrum,et al.  Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities. , 2010, Optics express.

[65]  C. Santori,et al.  Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation , 2010, 1001.5449.

[66]  Glenn S. Solomon,et al.  Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity , 2009, 0910.4658.

[67]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[68]  U. Woggon,et al.  Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity. , 2005, Physical review letters.

[69]  B. Valeur,et al.  Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential) , 2005 .

[70]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[71]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[72]  Clark,et al.  Silicon defects in diamond. , 1995, Physical review. B, Condensed matter.

[73]  Sauér,et al.  1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films. , 1994, Physical review. B, Condensed matter.

[74]  W. Marsden I and J , 2012 .