Imaging in Systems Biology

Most systems biology approaches involve determining the structure of biological circuits using genomewide "-omic" analyses. Yet imaging offers the unique advantage of watching biological circuits function over time at single-cell resolution in the intact animal. Here, we discuss the power of integrating imaging tools with more conventional -omic approaches to analyze the biological circuits of microorganisms, plants, and animals.

[1]  E. Meyerowitz,et al.  Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem , 2005, Current Biology.

[2]  Li A. Kung,et al.  Proteome chips for whole-organism assays , 2006, Nature Reviews Molecular Cell Biology.

[3]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[4]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[5]  Maqc Consortium The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements , 2006, Nature Biotechnology.

[6]  W. Webb,et al.  Two‐photon molecular excitation provides intrinsic 3‐dimensional resolution for laser‐based microscopy and microphotochemistry , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  M. Gerstein,et al.  Comparing protein abundance and mRNA expression levels on a genomic scale , 2003, Genome Biology.

[8]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[9]  Thomas J Deerinck,et al.  Multicolor and Electron Microscopic Imaging of Connexin Trafficking , 2002, Science.

[10]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[11]  Ryszard Maleszka,et al.  Microarray reality checks in the context of a complex disease , 2004, Nature Biotechnology.

[12]  Simon Frantz,et al.  An array of problems , 2005, Nature reviews. Drug discovery.

[13]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[14]  Norbert Perrimon,et al.  Applications of High-Throughput RNA Interference Screens to Problems in Cell and Developmental Biology , 2007, Genetics.

[15]  Rainer Breitling,et al.  Biological microarray interpretation: the rules of engagement. , 2006, Biochimica et biophysica acta.

[16]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[17]  Deborah Wessels,et al.  Application of 2D and 3D DIAS to motion analysis of live cells in transmission and confocal microscopy imaging. , 2006, Methods in molecular biology.

[18]  D. Payan,et al.  Detection of programmed cell death using fluorescence energy transfer. , 1998, Nucleic acids research.

[19]  R. Baldock,et al.  Anatomical ontologies: names and places in biology , 2005, Genome Biology.

[20]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[21]  A. Hadjantonakis,et al.  Live imaging and morphometric analysis of embryonic development in the ascidian Ciona intestinalis , 2005, Genesis.

[22]  R. Losick,et al.  Molecular genetics of sporulation in Bacillus subtilis. , 1996, Annual review of genetics.

[23]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[24]  E. Mjolsness,et al.  An auxin-driven polarized transport model for phyllotaxis , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Vladislav V Verkhusha,et al.  Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells , 2004, Nature Methods.

[26]  S. Fraser,et al.  Time-lapse microscopy of brain development. , 2004, Methods in cell biology.

[27]  Chang‐Deng Hu,et al.  Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. , 2002, Molecular cell.

[28]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[29]  E. Meyerowitz,et al.  Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana , 2004, Development.

[30]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[31]  Nicholas Negroponte,et al.  Being Digital , 1995 .

[32]  Scott E Fraser,et al.  Cell Dynamics During Somite Boundary Formation Revealed by Time-Lapse Analysis , 2002, Science.

[33]  Gürol M. Süel,et al.  An excitable gene regulatory circuit induces transient cellular differentiation , 2006, Nature.

[34]  Hanlee P. Ji,et al.  The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. , 2006, Nature biotechnology.

[35]  Roger Y. Tsien,et al.  A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C , 2003, The Journal of cell biology.

[36]  P. Lemaire,et al.  A Quantitative Approach to the Study of Cell Shapes and Interactions during Early Chordate Embryogenesis , 2006, Current Biology.

[37]  R. Lempicki,et al.  Evaluation of gene expression measurements from commercial microarray platforms. , 2003, Nucleic acids research.

[38]  F. J. Livesey,et al.  Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single-cell level , 2006, Genome Biology.

[39]  M. Levine,et al.  Unraveling genomic regulatory networks in the simple chordate, Ciona intestinalis. , 2005, Genome research.

[40]  R. Tsien,et al.  Circular permutation and receptor insertion within green fluorescent proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Gene Ontology Consortium,et al.  The Gene Ontology (GO) project in 2006 , 2005, Nucleic Acids Res..

[42]  Christophe Zimmer,et al.  Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces , 2005, IEEE Transactions on Image Processing.

[43]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[44]  Timothy J Mitchison,et al.  Small‐Molecule Screening and Profiling by Using Automated Microscopy , 2005, Chembiochem : a European journal of chemical biology.

[45]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[46]  C. MacAulay,et al.  A comparison of some quick and simple threshold selection methods for stained cells. , 1988, Analytical and quantitative cytology and histology.

[47]  John Reinitz,et al.  A database for management of gene expression data in situ , 2004, Bioinform..

[48]  Thomas D Pollard,et al.  Counting Cytokinesis Proteins Globally and Locally in Fission Yeast , 2005, Science.

[49]  Eric H Davidson,et al.  Confocal quantification of cis-regulatory reporter gene expression in living sea urchin. , 2006, Developmental biology.

[50]  M. Dickinson,et al.  Dynamic in vivo imaging of mammalian hematovascular development using whole embryo culture. , 2005, Methods in molecular medicine.

[51]  David G Spiller,et al.  Multi-parameter analysis of the kinetics of NF-kappaB signalling and transcription in single living cells. , 2002, Journal of cell science.

[52]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[53]  Gavin Sherlock,et al.  The Stanford Microarray Database: implementation of new analysis tools and open source release of software , 2002, Nucleic Acids Res..

[54]  M. Vidal,et al.  Interactome: gateway into systems biology. , 2005, Human molecular genetics.

[55]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .

[56]  E. Davidson,et al.  Gene regulatory networks for development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Scott E. Fraser,et al.  Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development , 2003, Mechanisms of Development.

[58]  R. Waterston,et al.  Automated cell lineage tracing in Caenorhabditis elegans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Badrinath Roysam,et al.  A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks , 2003, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[60]  J. Ellenberg,et al.  High-throughput fluorescence microscopy for systems biology , 2006, Nature Reviews Molecular Cell Biology.

[61]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[62]  G. Steucek,et al.  Biophysical mechanisms for morphogenetic progressions at the shoot apex. , 1992, Developmental biology.

[63]  R. Yu,et al.  Single-cell quantification of molecules and rates using open-source microscope-based cytometry , 2007, Nature Methods.

[64]  C. Pesce,et al.  Regulated cell-to-cell variation in a cell-fate decision system , 2005, Nature.

[65]  Robert M Zucker,et al.  Evaluation of confocal microscopy system performance. , 2001, Methods in molecular biology.

[66]  R. Zucker,et al.  Evaluation of confocal microscopy system performance. , 2001, Cytometry.

[67]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.