Ab initio study of tunable band gap of monolayer and bilayer phosphorene by the vertical electronic field

[1]  Chongwu Zhou,et al.  Black Phosphorus Field-Effect Transistors with Work Function Tunable Contacts. , 2017, ACS nano.

[2]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[3]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[4]  X. Kong,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature Communications.

[5]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[6]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[7]  S. Shi,et al.  Ab initio studies on atomic and electronic structures of black phosphorus , 2010 .

[8]  Ø. Prytz,et al.  The influence of exact exchange corrections in van der Waals layered narrow bandgap black phosphorus , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  B. Gu,et al.  Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes , 2008 .

[10]  Masa Ishigami,et al.  Observation of the giant stark effect in boron-nitride nanotubes. , 2005, Physical review letters.

[11]  Steven G. Louie,et al.  Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect , 2004 .

[12]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[13]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[14]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[15]  A. Morita,et al.  Electronic structure of black phosphorus: Tight binding approach , 1981 .

[16]  Y. Maruyama,et al.  Synthesis and some properties of black phosphorus single crystals , 1981 .

[17]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .