Block Copolymer-Templated Nanocomposite Electrodes for Rechargeable Lithium Batteries

Department of Chemistry, Northeastern University, Boston, Massachusetts 02115-5000, USAA self-organizing, nanocomposite electrode~SONE! system was developed as a model lithium alloy-based anode for rechargeablelithium batteries. In situ X-ray adsorption spectroscopy, galvanostatic testing, cyclic voltammetry, X-ray diffraction, and trans-mission electron microscopy were used to analyze the electrode, which was fabricated from a polyethylene oxide-based blockcopolymer, single-walled carbon nanotubes, and gold salt. Processing involved a single mixing step without need of a reducingagent. It was found that thermodynamic self-assembly of the block copolymer could provide a template for incorporation of boththe gold salt and nanotubes. Electrochemical testing and subsequent analysis showed that owing to the small particle size and thesurrounding block copolymer matrix, the SONE system could cycle over 600 cycles with rates varying between C/1.8 and 8.8Cwith little evidence of decrepitation or coarsening.© 2002 The Electrochemical Society. @DOI: 10.1149/1.1518482# All rights reserved.Manuscript submitted February 6, 2002; revised manuscript received June 13, 2002. Available electronically October 31, 2002.

[1]  E. Stern,et al.  X-ray beam line at the NSLS for X-ray absorption studies in material science , 1983 .

[2]  Donald R. Sadoway,et al.  Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries , 2001 .

[3]  A. Mayes,et al.  Block copolymer thin films : Physics and applications , 2001 .

[4]  R. Huggins,et al.  Investigations of binary lithium-zinc, lithium-cadmium and lithium-lead alloys as negative electrodes in organic solvent-based electrolyte , 1986 .

[5]  Otto Zhou,et al.  ELECTROCHEMICAL INTERCALATION OF SINGLE-WALLED CARBON NANOTUBES WITH LITHIUM , 1999 .

[6]  A. Pelton The Au−Li (Gold-Lithium) system , 1986 .

[7]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[8]  F. M. Gray,et al.  Novel polymer electrolytes based on ABA block copolymers , 1988 .

[9]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[10]  C. R. Martin,et al.  Improving the Volumetric Energy Densities of Nanostructured V 2 O 5 Electrodes Prepared Using the Template Method , 2001 .

[11]  A. Balazs,et al.  Predicting the Mesophases of Copolymer-Nanoparticle Composites , 2001, Science.

[12]  Liquan Chen,et al.  Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries , 2001 .

[13]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[14]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[15]  M. Dresselhaus,et al.  Energy-Related Applications of Nanostructured Carbons , 1997 .

[16]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[17]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[18]  Young-Il Jang,et al.  Rubbery Block Copolymer Electrolytes for Solid‐State Rechargeable Lithium Batteries , 1999 .

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  J. Yang,et al.  Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries , 1999 .

[21]  A. Balazs,et al.  Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures: Simulation and Theory , 2000 .

[22]  Chun-Guey Wu,et al.  Conducting Polyaniline Filaments in a Mesoporous Channel Host , 1994, Science.

[23]  S. Bonnamy,et al.  Lithium interaction with carbon nanotubes , 1997 .

[24]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[25]  Andrew G. Rinzler,et al.  Solid‐State Electrochemistry of the Li Single Wall Carbon Nanotube System , 2000 .

[26]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[27]  L. Nazar,et al.  Nanostructured materials for energy storage , 2001 .

[28]  X. B. Zhang,et al.  Structure and Lithium Insertion Properties of Carbon Nanotubes , 1999 .

[29]  H. Baker,et al.  Alloy phase diagrams , 1992 .

[30]  Ulrich Wiesner,et al.  Block Copolymer−Ceramic Hybrid Materials from Organically Modified Ceramic Precursors , 2001 .

[31]  G. Craig,et al.  Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers , 1992 .

[32]  Hirokazu Hasegawa,et al.  Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure of polystyrene-polyisoprene diblock polymers , 1987 .

[33]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[34]  Donald R. Sadoway,et al.  Block Copolymer Electrolytes Synthesized by Atom Transfer Radical Polymerization for Solid-State, Thin-Film Lithium Batteries , 2002 .

[35]  F. E. Little,et al.  Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes , 2001 .

[36]  Y. Chiang,et al.  Nanocomposite Li-ion battery anodes produced by the partial reduction of mixed oxides , 2001 .

[37]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[38]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[39]  I. Khan,et al.  ABA triblock comb copolymers with oligo(oxyethylene) side chains as matrix for ion transport , 1989 .

[40]  J. Watkins,et al.  Carbon Dioxide – Dilated Block Copolymer Templates for Nanostructured Materials , 1999 .

[41]  H. W. King Quantitative size-factors for metallic solid solutions , 1966 .

[42]  Otto Zhou,et al.  Alloy Formation in Nanostructured Silicon , 2001 .

[43]  Volume size factor and lattice parameter in cubic intermetallics with the B2 structure , 1998 .

[44]  R. Cohen,et al.  Brief review of metal nanoclusters in block copolymer films , 1998 .

[45]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[46]  Charles R. Martin,et al.  Optical properties of composite membranes containing arrays of nanoscopic gold cylinders , 1992 .

[47]  C. R. Martin,et al.  A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis , 2001 .

[48]  A. Mayes,et al.  Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries , 2001 .

[49]  D. Sayers,et al.  Criteria for automatic x‐ray absorption fine structure background removal , 1981 .

[50]  R. C. Saunders,et al.  Emf Measurements of Electrochemically Prepared Lithium‐Aluminum Alloy , 1971 .

[51]  Charles R. Martin,et al.  Rate Capabilities of Nanostructured LiMn2 O 4 Electrodes in Aqueous Electrolyte , 2000 .

[52]  R. Cohen,et al.  Electrical properties of block copolymers containing silver nanoclusters within oriented lamellar microdomains , 1997 .

[53]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[54]  B. Scrosati,et al.  A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode , 1999 .

[55]  D. Koningsberger,et al.  X-ray absorption : principles, applications, techniques of EXAFS, SEXAFS and XANES , 1988 .

[56]  W. Klemm,et al.  Das Verhalten der Alkalimetalle zu Kupfer, Silber und Gold , 1961 .

[57]  Bruce Dunn,et al.  Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries , 2002 .

[58]  U. Wiesner,et al.  Nano-objects with Controlled Shape, Size, and Composition from Block Copolymer Mesophases , 1999 .

[59]  M. Rubner,et al.  Selective Electroless Copper Deposition within Block Copolymer Microdomains , 2000 .