Spectral Theory of Linear Operators

In this chapter we examine the spectral properties of operators commonly encountered in electromagnetics. We emphasize the role of eigenvalues and eigenfunctions in spectral theory since these quantities play an important role in many applications, as both mathematical and physical entities. The primary goal of this chapter is to present elements from the spectral theory of operators on infinite-dimensional spaces. Operators on finitedimensional spaces and their associated matrix representations are also briefly covered, as this material forms an appropriate starting point for discussion.

[1]  F. Vasilescu,et al.  Analytic Functional Calculus and Spectral Decompositions , 1983 .

[2]  C. Mccarthy Commuting Boolean algebras of projections. , 1961 .

[3]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[4]  W. G. Bade On Boolean algebras of projections and algebras of operators , 1955 .

[5]  Y. Gordon,et al.  Absolutely summing operators and local unconditional structures , 1974 .

[6]  Stanly Steinberg,et al.  Meromorphic families of compact operators , 1968 .

[7]  P. Spain A GENERALISATION OF A THEOREM OF GROTHENDIECK , 1976 .

[8]  G. Reuter LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .

[9]  T. Palmer Unbounded normal operators on Banach spaces , 1968 .

[10]  H. R. Dowson,et al.  LINEAR OPERATORS PART III: SPECTRAL OPERATORS , 1974 .

[11]  I. Doust,et al.  Well-bounded operators on nonreflexive Banach spaces , 1996 .

[12]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[13]  I. Gohberg,et al.  Basic Operator Theory , 1981 .

[14]  Soon K. Cho,et al.  Electromagnetic Scattering , 2012 .

[15]  J. Duncan,et al.  Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras: Hermitian elements of a complex unital Banach algebra , 1971 .

[16]  S. Kakutani An example concerning uniform boundedness of spectral measures. , 1954 .

[17]  Joram Lindenstrauss Classical Banach Spaces II: Function Spaces , 1979 .

[18]  D. R. Smart Conditionally convergent spectral expansions , 1960, Journal of the Australian Mathematical Society.

[19]  T. Gillespie Commuting well-bounded operators on Hilbert spaces , 1976, Proceedings of the Edinburgh Mathematical Society.

[20]  Richard A. Silverman,et al.  Elementary Functional Analysis , 1974 .

[21]  Joram Lindenstrauss,et al.  Classical Banach spaces I: Sequence Spaces. , 1977 .

[22]  C. Foias,et al.  Theory of generalized spectral operators , 1968 .

[23]  John Y. Barry On the convergence of ordered sets of projections , 1954 .

[24]  G. Vainikko,et al.  The convergence rate of approximate methods in the eigenvalue problem when the parameter appears non-linearly☆ , 1974 .

[25]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[26]  W. Ricker Operator Algebras Generated by Commuting Projections: A Vector Measure Approach , 1999 .

[27]  E. Berkson A characterization of scalar type operators on reflexive Banach spaces. , 1963 .

[28]  T. Gillespie Strongly closed bounded Boolean algebras of projections , 1981, Glasgow Mathematical Journal.

[29]  M. Crabb,et al.  Commutators and normal operators , 1977, Glasgow Mathematical Journal.

[30]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[31]  W. W. Hansen A New Type of Expansion in Radiation Problems , 1935 .

[32]  F. Bonsall,et al.  Complete Normed Algebras , 1973 .

[33]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[34]  E. Berkson On spectral families of projections in Hardy spaces , 1985 .

[35]  I. V. Lindell Variational Methods for Nonstandard Eigenvalue Problems in Waveguide and Resonator Analysis , 1982 .

[36]  C. McCarthy Commuting Boolean algebras of projections. II. Boundedness in , 1964 .

[37]  J. Ringrose On well-bounded operators , 1960, Journal of the Australian Mathematical Society.

[38]  W. N. Everitt Allan M. Krall, Linear Methods of Applied Analysis (Addison-Wesley/Benjamin, Reading, Massachusetts, 1973), $16.00 (cloth), $9.50 (soft cover). , 1974 .

[39]  On double Fourier series , 1950 .

[40]  E. Berkson,et al.  HERMITIAN OPERATORS AND ONE-PARAMETER GROUPS OF ISOMETRIES IN HARDY SPACES , 1973 .

[41]  G. Lumer SEMI-INNER-PRODUCT SPACES , 1961 .

[42]  Alexander G. Ramm,et al.  Theoretical and practical aspects of singularity and eigenmode expansion methods , 1980 .

[43]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[44]  P. Spain On well-bounded operators of type (B) , 1972, Proceedings of the Edinburgh Mathematical Society.

[45]  I. Kluvánek Characterization of scalar-type spectral operators , 1966 .

[46]  T. Gillespie Boundedness Criteria for Boolean Algebras of Projections , 1997 .

[47]  Richard V. Kadison,et al.  OPERATOR ALGEBRAS WITH A FAITHFUL WEAKLY-CLOSED REPRESENTATION , 1956 .

[48]  J. Diestel,et al.  On vector measures , 1974 .

[49]  A. Friedman Foundations of modern analysis , 1970 .

[50]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[51]  E. Hobson,et al.  Theory of functions of real variable and theory of Fourier series , 2022 .

[52]  Well-bounded and scalar-type spectral operators on spaces not containing ₀ , 1989 .

[53]  E. Berkson,et al.  Möbius transformations of the disc and one-parameter groups of isometries of ^{} , 1974 .

[54]  R. Mittra,et al.  Computational Methods for Electromagnetics , 1997 .

[55]  I. Doust,et al.  Compact well-bounded operators , 2001, Glasgow Mathematical Journal.

[56]  F. R. Gantmakher The Theory of Matrices , 1984 .

[57]  S. Axler Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.

[58]  M. Neumann,et al.  An introduction to local spectral theory , 2000 .

[59]  P. Goldbart,et al.  Linear differential operators , 1967 .

[60]  Michal Mrozowski Guided Electromagnetic Waves: Properties and Analysis , 1997 .

[61]  P. Mikusinski,et al.  Introduction to Hilbert spaces with applications , 1990 .

[62]  G. Krabbe A Helly Convergence Theorem for Stieltjes Integrals , 1965 .

[63]  P. Spain On scalar-type spectral operators , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  Jacob T. Schwartz,et al.  Weak Compactness and Vector Measures , 1955, Canadian Journal of Mathematics.

[65]  P. Spain The W *-Closure of a V *-Algebra , 1974 .

[66]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[67]  D. Dudley Mathematical Foundations for Electromagnetic Theory , 1994 .

[68]  C. Baum,et al.  Emerging technology for transient and broad-band analysis and synthesis of antennas and scatterers , 1976, Proceedings of the IEEE.

[69]  T. Gillespie,et al.  A representation theorem for a complete Boolean algebra of projections , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[70]  Karim Ramdani,et al.  Mathematical Analysis of Conducting and Superconducting Transmission Lines , 2000, SIAM J. Appl. Math..

[71]  Garrison Sposito,et al.  Mathematics for physicists , 1967 .

[72]  L. Marin MAJOR RESULTS AND UNRESOLVED ISSUES IN SINGULARITY EXPANSION METHOD , 1981 .

[73]  N. Young An Introduction to Hilbert Space , 1988 .

[74]  W. Sills ON ABSOLUTELY CONTINUOUS FUNCTIONS AND THE WELL-BOUNDED OPERATOR , 1966 .

[75]  A. Grothendieck,et al.  Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du Type C(K) , 1953, Canadian Journal of Mathematics.

[76]  Weak compactness in the dual space of a C∗-algebra , 1972 .