Solving the inverse dynamics of a flexible 3D robot for a trajectory tracking task

The end-effector trajectory tracking of robotic manipulators with flexible links requires advanced control concepts. In order to compute the feedforward component of the control scheme, the inverse dynamics of such flexible 3D multibody system is solved using an optimal control method. The robot is modeled using nonlinear finite elements formulated on the SE(3) group. Hence singularity and parameterization issues that can arise from 3D rotations are avoided. A numerical example of a 3D flexible arm is analyzed to demonstrate the capabilities of the method.

[1]  Alessandro De Luca Feedforward/Feedback Laws for the Control of Flexible Robots , 2000, ICRA.

[2]  Peter Eberhard,et al.  Design of Feed-Forward Control for Underactuated Multibody Systems with Kinematic Redundancy , 2009 .

[3]  Olivier Bruls,et al.  Geometrically exact beam finite element formulated on the special Euclidean group SE(3) , 2014 .

[4]  T. Bertram,et al.  Input shaping and strain gauge feedback vibration control of an elastic robotic arm , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[5]  Jorge Martins,et al.  Modeling of Flexible Beams for Robotic Manipulators , 2002 .

[6]  Juan Fernando Peza-Solís,et al.  Modeling and Tip Position Control of a Flexible Link Robot: Experimental Results , 2009, Computación y Sistemas.

[7]  Dong-Soo Kwon,et al.  A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator , 1994 .

[8]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[9]  O. Brüls,et al.  Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach , 2013 .

[10]  Olivier Bruls,et al.  A Stable Inversion Method for Feedforward Control of Constrained Flexible Multibody Systems , 2014 .

[11]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[12]  Jörn Malzahn,et al.  Vibration control of a multi-link flexible robot arm with Fiber-Bragg-Grating sensors , 2009, 2009 IEEE International Conference on Robotics and Automation.

[13]  Olivier Bruls,et al.  Two Lie Group Formulations for Dynamic Multibody Systems With Large Rotations , 2011 .

[14]  Olivier Bruls,et al.  A formulation on the special Euclidean group for dynamic analysis of multibody systems , 2014 .

[15]  Stig Moberg,et al.  Inverse Dynamics of Flexible Manipulators , 2009 .

[16]  Olivier Bruls,et al.  Lie group generalized-α time integration of constrained flexible multibody systems , 2012 .

[17]  Robert Seifried,et al.  Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design , 2013 .

[18]  B. Paden,et al.  Nonlinear inversion-based output tracking , 1996, IEEE Trans. Autom. Control..

[19]  Valentin Sonneville,et al.  A geometric local frame approach for flexible multibody systems , 2015 .