General polytopial H(div) conformal finite elements and their discretisation spaces

We present a class of discretisation spaces and H(div)-conformal elements that can be built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the element's shape with the divergence properties of the Raviart-Thomas elements on the boundaries, the designed frameworks offer a wide range of H(div)-conformal discretisations. As those elements are set up through degrees of freedom, their definitions are easily amenable to the properties the approximated quantities are wished to fulfill. Furthermore, we show that one straightforward restriction of this general setting share its properties with the classical Raviart-Thomas elements at each interface, for any order and any polytopial shape. Then, to close the introduction of those new elements by an example, we investigate the shape of the basis functions corresponding to particular elements in the two dimensional case.

[1]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[2]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[3]  Rémi Abgrall,et al.  A class of finite dimensional spaces and H(div) conformal elements on general polytopes , 2019, ArXiv.

[4]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[5]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[6]  Philipp Öffner,et al.  Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..

[7]  Chandrajit L. Bajaj,et al.  Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes , 2014, Comput. Methods Appl. Math..

[8]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[9]  Élise Le Mélédo,et al.  On the Connection between Residual Distribution Schemes and Flux Reconstruction , 2018, 1807.01261.

[10]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[11]  Raphaël Loubère,et al.  ReALE: A Reconnection Arbitrary-Lagrangian―Eulerian method in cylindrical geometry , 2011 .

[12]  Wenbin Chen,et al.  Minimal degree H(curl) and H(div) conforming finite elements on polytopal meshes , 2015, Math. Comput..

[13]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[14]  Lourenço Beirão da Veiga,et al.  H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.

[15]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[16]  A. Ern,et al.  Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes , 2013 .

[17]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[18]  F. Dubois,et al.  Raviart–Thomas finite elements of Petrov–Galerkin type , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[19]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[20]  Daniele A. Di Pietro,et al.  An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow , 2014, Math. Comput..

[21]  Glaucio H. Paulino,et al.  Polygonal finite elements for incompressible fluid flow , 2014 .

[22]  G. Geymonat,et al.  A Hybrid High-Order method for Kirchhoff-Love plate bending problems , 2017, 1706.06781.

[23]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[24]  Jérôme Droniou,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2019, J. Comput. Phys..

[25]  J. Chabrowski The Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations , 1991 .

[26]  Daniele A. Di Pietro,et al.  An hp-Hybrid High-Order Method for Variable Diffusion on General Meshes , 2017, Comput. Methods Appl. Math..

[27]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .