Nonparametric classification using radial basis function nets and empirical risk minimization

In the paper convergence properties of radial basis function (RBF) networks are studied for a large class of basis functions. The universal approximation property of the nets is shown. Parameters of RBF nets are learned through empirical risk minimization. The optimal nets are shown to be consistent in nonparametric classification. The tools used in the analysis include Vapnik-Chervonenkis (VC) dimension and the covering numbers.

[1]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[2]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[3]  Lei Xu,et al.  Recent Advances on Techniques of Static Feedforward Networks with Supervised Learning , 1992, Int. J. Neural Syst..

[4]  Tomaso A. Poggio,et al.  Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.

[5]  Adam Krzyzak,et al.  On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size , 1994, Neural Networks.

[6]  A. Barron Approximation and Estimation Bounds for Artificial Neural Networks , 1991, COLT '91.

[7]  James D. Keeler,et al.  Layered Neural Networks with Gaussian Hidden Units as Universal Approximations , 1990, Neural Computation.

[8]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[9]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[10]  Jooyoung Park,et al.  Approximation and Radial-Basis-Function Networks , 1993, Neural Computation.

[11]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[12]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[13]  András Faragó,et al.  Strong universal consistency of neural network classifiers , 1993, IEEE Trans. Inf. Theory.

[14]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[15]  Gábor Lugosi,et al.  Nonparametric estimation via empirical risk minimization , 1995, IEEE Trans. Inf. Theory.

[16]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[17]  D. Pollard Convergence of stochastic processes , 1984 .