Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications

[1]  V. Klimov,et al.  Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states , 2007 .

[2]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[3]  Matt Law,et al.  Multiple exciton generation in films of electronically coupled PbSe quantum dots. , 2007, Nano letters.

[4]  Antonio Luque,et al.  Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands , 2007 .

[5]  T. Gregorkiewicz,et al.  Nanosecond dynamics of the near-infrared photoluminescence of Er-doped SiO2 sensitized with Si nanocrystals. , 2006, Physical review letters.

[6]  A. Nozik,et al.  Multiexciton generation by a single photon in nanocrystals. , 2006, Nano letters.

[7]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[8]  C. Delerue,et al.  Role of impact ionization in multiple exciton generation in PbSe nanocrystals , 2006 .

[9]  M. Beard,et al.  PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. , 2006, Journal of the American Chemical Society.

[10]  M. Koeberg,et al.  Direct observation of electron-to-hole energy transfer in CdSe quantum dots. , 2006, Physical review letters.

[11]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[12]  R. Schaller,et al.  Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals , 2005 .

[13]  R. Schaller,et al.  High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states , 2005 .

[14]  M. Bittner,et al.  Picosecond photoluminescence and transient absorption in silicon nanocrystals , 2005 .

[15]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[16]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[17]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[18]  A. Zunger,et al.  Direct carrier multiplication due to inverse Auger scattering in CdSe quantum dots , 2004 .

[19]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[20]  M. Green,et al.  Improving solar cell efficiencies by down-conversion of high-energy photons , 2002 .

[21]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[22]  F. Einar Kruis,et al.  Energy Levels in Embedded Semiconductor Nanoparticles and Nanowires , 2001 .

[23]  A. Polman,et al.  Erbium as a probe of everything , 2001 .

[24]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[25]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[26]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[27]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[28]  Cherie R. Kagan,et al.  Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. , 1996, Physical review. B, Condensed matter.

[29]  Allan,et al.  Saturation and voltage quenching of porous-silicon luminescence and the importance of the Auger effect. , 1995, Physical review. B, Condensed matter.

[30]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[31]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[32]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .