Intermittence and connectivity of interactions in pigeon flock flights

[1]  Bence Ferdinandy,et al.  Collective motion of groups of self-propelled particles following interacting leaders , 2016, 1609.03212.

[2]  Tao Zhou,et al.  Switching hierarchical leadership mechanism in homing flight of pigeon flocks , 2016 .

[3]  H. Chaté,et al.  Intermittent collective dynamics emerge from conflicting imperatives in sheep herds , 2015, Proceedings of the National Academy of Sciences.

[4]  Marc Holderied,et al.  Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats , 2015, PLoS Comput. Biol..

[5]  Zhiyong Chen,et al.  Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks , 2014, Scientific Reports.

[6]  Andrea Cavagna,et al.  Information transfer and behavioural inertia in starling flocks , 2013, Nature Physics.

[7]  Tamás Vicsek,et al.  Outdoor flocking and formation flight with autonomous aerial robots , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Tamás Vicsek,et al.  Leadership and Path Characteristics during Walks Are Linked to Dominance Order and Individual Traits in Dogs , 2014, PLoS Comput. Biol..

[9]  Eliseo Ferrante,et al.  Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. , 2013, Physical review letters.

[10]  David J. T. Sumpter,et al.  Interaction rules underlying group decisions in homing pigeons , 2013, Journal of The Royal Society Interface.

[11]  Colin R. Twomey,et al.  Visual sensory networks and effective information transfer in animal groups , 2013, Current Biology.

[12]  T. Vicsek,et al.  Context-dependent hierarchies in pigeons , 2013, Proceedings of the National Academy of Sciences.

[13]  Wenwu Yu,et al.  Applications of Collective Circular Motion Control to Multirobot Systems , 2013, IEEE Transactions on Control Systems Technology.

[14]  Charlotte K. Hemelrijk,et al.  Schools of fish and flocks of birds: their shape and internal structure by self-organization , 2012, Interface Focus.

[15]  Sepideh Bazazi,et al.  Intermittent Motion in Desert Locusts: Behavioural Complexity in Simple Environments , 2012, PLoS Comput. Biol..

[16]  Bence Ferdinandy,et al.  Landing together: How flocks arrive at a coherent action in time and space in the presence of perturbations , 2012, 1202.3037.

[17]  W. Bialek,et al.  Statistical mechanics for natural flocks of birds , 2011, Proceedings of the National Academy of Sciences.

[18]  Larissa Conradt,et al.  Models in animal collective decision-making: information uncertainty and conflicting preferences , 2012, Interface Focus.

[19]  D. Sumpter,et al.  Inferring the rules of interaction of shoaling fish , 2011, Proceedings of the National Academy of Sciences.

[20]  Zhiyong Chen,et al.  No-beacon collective circular motion of jointly connected multi-agents , 2011, Autom..

[21]  Alan M. Wilson,et al.  Flying in a flock comes at a cost in pigeons , 2011, Nature.

[22]  Dirk Helbing,et al.  How simple rules determine pedestrian behavior and crowd disasters , 2011, Proceedings of the National Academy of Sciences.

[23]  Daniel W Franks,et al.  Limited interactions in flocks: relating model simulations to empirical data , 2011, Journal of The Royal Society Interface.

[24]  Daniel W. Franks,et al.  Social networks and models for collective motion in animals , 2011, Behavioral Ecology and Sociobiology.

[25]  T. Vicsek,et al.  Collective decision making in cohesive flocks , 2010, 1007.4453.

[26]  O. Petit,et al.  Decision-making processes: The case of collective movements , 2010, Behavioural Processes.

[27]  T. Vicsek,et al.  Hierarchical group dynamics in pigeon flocks , 2010, Nature.

[28]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[29]  Iztok Lebar Bajec,et al.  Organized flight in birds , 2009, Animal Behaviour.

[30]  G. Dell’Omo,et al.  Flock flying improves pigeons' homing: GPS track analysis of individual flyers versus small groups , 2008, Animal Behaviour.

[31]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[32]  M A Lewis,et al.  Complex spatial group patterns result from different animal communication mechanisms , 2007, Proceedings of the National Academy of Sciences.

[33]  I. Aranson,et al.  Concentration dependence of the collective dynamics of swimming bacteria. , 2007, Physical review letters.

[34]  T. Vicsek,et al.  Phase transition in the collective migration of tissue cells: experiment and model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  D. Helbing,et al.  Analytical approach to continuous and intermittent bottleneck flows. , 2006, Physical review letters.

[36]  Joseph J. Hale,et al.  From Disorder to Order in Marching Locusts , 2006, Science.

[37]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[38]  Luke Rendell,et al.  Animal Communication Networks, Peter McGregor (Ed.). Cambridge University Press, Cambridge (2005), Pp. xiv+657. Price £75.00 , 2005 .

[39]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[40]  J. Godin,et al.  Context-dependent group size choice in fish , 2004, Animal Behaviour.

[41]  Mark Campbell,et al.  Planning Algorithm for Multiple Satellite Clusters , 2003 .

[42]  A. Jadbabaie,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[43]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[44]  Timothy W. McLain,et al.  Coordinated target assignment and intercept for unmanned air vehicles , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[45]  H. Weimerskirch,et al.  Energy saving in flight formation , 2001, Nature.

[46]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[47]  S. Gueron,et al.  The Dynamics of Herds: From Individuals to Aggregations , 1996 .

[48]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[49]  Cutts,et al.  ENERGY SAVINGS IN FORMATION FLIGHT OF PINK-FOOTED GEESE , 1994, The Journal of experimental biology.

[50]  U. Grenander,et al.  A stochastic nonlinear model for coordinated bird flocks , 1990 .