Science potential from a Europa lander.

The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.

[1]  Kerry J. Cupit Tectonics of Europa , 2008 .

[2]  P G Brown,et al.  The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. , 2000, Science.

[3]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[4]  Gabriel Tobie,et al.  Tidally heated convection: Constraints on Europa's ice shell thickness , 2003 .

[5]  C. Bentley,et al.  Microearthquakes under and alongside ice stream B, Antarctica, detected by a new passive seismic array , 1987 .

[6]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[7]  A. Showman,et al.  Coupled convection and tidal dissipation in Europa’s ice shell using non-Newtonian grain-size-sensitive (GSS) creep rheology , 2011 .

[8]  Robert L. Kovach,et al.  Seismic Detectability of a Subsurface Ocean on Europa , 2001 .

[9]  Robert E. Johnson,et al.  Photolysis and radiolysis of water ice on outer solar system bodies , 1997 .

[10]  T. McCord,et al.  Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions , 2001 .

[11]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[12]  H. V. Lauer,et al.  Mars 2007 Phoenix Scout mission Organic Free Blank: Method to distinguish Mars organics from terrestrial organics , 2008 .

[13]  H. Kohnen,et al.  The temperature dependence of seismic waves in ice , 1974, Journal of Glaciology.

[14]  K. P. Hand,et al.  Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell , 2007 .

[15]  L. Prockter,et al.  Landforms of Europa and selection of landing sites , 2011 .

[16]  David P. O'Brien,et al.  A melt-through model for chaos formation on Europa , 2002 .

[17]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[18]  M. R. Johnson,et al.  Seabed topography under the southern and western Ronne Ice Shelf, derived from seismic surveys , 1997, Antarctic Science.

[19]  R. Sullivan,et al.  Morphology of Europan bands at high resolution: A mid‐ocean ridge‐type rift mechanism , 2002 .

[20]  M. Lackie,et al.  Seismic reflection studies of the Amery Ice Shelf, East Antarctica: delineating meteoric and marine ice , 2006 .

[21]  D. Vaughan,et al.  New ice thickness maps of Filchner–Ronne Ice Shelf, Antarctica, with specific focus on grounding lines and marine ice , 2007, Antarctic Science.

[22]  Raymond E. Arvidson,et al.  Explosive erosion during the Phoenix landing exposes subsurface water on Mars , 2011 .

[23]  Willem Jan van de Berg,et al.  Firn depth correction along the Antarctic grounding line , 2008, Antarctic Science.

[24]  P. Cassen,et al.  Structure and thermal evolution of the Galilean satellites , 1982 .

[25]  M. Zolensky,et al.  Sulfate content of Europa's ocean and shell: evolutionary considerations and some geological and astrobiological implications. , 2003, Astrobiology.

[26]  Christopher F Chyba,et al.  Energy, chemical disequilibrium, and geological constraints on Europa. , 2007, Astrobiology.

[27]  H. Roethlisberger Cold Regions Science and Engineering Monograph, Section 11-A2a: Seismic Exploration in Cold Regions, , 1972 .

[28]  R. Greeley,et al.  Episodic plate separation and fracture infill on the surface of Europa , 1998, Nature.

[29]  R. Carlson,et al.  Radiolysis of Sulfuric Acid, Sulfuric Acid Monohydrate, and Sulfuric Acid Tetrahydrate and Its Relevance to Europa , 2011 .

[30]  R. Brunetto,et al.  Reflectance and transmittance spectra (2.2–2.4 μm) of ion irradiated frozen methanol , 2005 .

[31]  T V Johnson,et al.  Organics and other molecules in the surfaces of Callisto and Ganymede. , 1997, Science.

[32]  B. Giese,et al.  Thermal and topographic tests of Europa chaos formation models from Galileo E15 observations , 2005 .

[33]  H. Hussmann,et al.  Thermal Evolution of Europa's Silicate Interior , 2009 .

[34]  C. Chapman,et al.  Europa's Crater Distributions and Surface Ages , 2009 .

[35]  C. Russell,et al.  Searching for liquid water in Europa by using surface observatories. , 2002, Astrobiology.

[36]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[37]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[38]  S. Squyres,et al.  Development of the Mars microbeam Raman spectrometer (MMRS) , 2003 .

[39]  L. Stern,et al.  Solidification and microstructures of binary ice-I/hydrate eutectic aggregates , 2007 .

[40]  Paul M. Schenk,et al.  Ages and interiors: the cratering record of the Galilean satellites , 2007 .

[41]  T. McCord,et al.  Galileo NIMS measurements of the absorption bands at 4.03 and 4.25 microns in distant observations of Europa , 1998 .

[42]  L. Hood,et al.  The Moon: Sources of the Crustal Magnetic Anomalies , 1979, Science.

[43]  R. Alley,et al.  Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream , 1986, Nature.

[44]  A. Showman,et al.  Coupled Convection and Tidal Dissipation in Europa's Ice Shell: 2. Non-Newtonian Viscosity , 2010 .

[45]  T. Hoehler Biological energy requirements as quantitative boundary conditions for life in the subsurface , 2004 .

[46]  Paul M. Schenk,et al.  Slope characteristics of Europa: Constraints for landers and radar Sounding , 2009 .

[47]  G. Strazzulla Cosmic ion bombardment of the icy moons of Jupiter , 2011 .

[48]  R. Alley,et al.  Deformation of till beneath ice stream B, West Antarctica , 1986, Nature.

[49]  E. Shock,et al.  Composition and stability of salts on the surface of Europa and their oceanic origin , 2001 .

[50]  J. K. Crowley,et al.  Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. , 1998, Science.

[51]  R. Greenberg,et al.  The influence of obliquity on europan cycloid formation , 2009 .

[52]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[53]  Robert T. Pappalardo,et al.  The origin of domes on Europa: The role of thermally induced compositional diapirism , 2004 .

[54]  M. Kivelson,et al.  The rotation period of Jupiter , 2001 .

[55]  R. Greeley,et al.  Resurfacing history of Europa from pole-to-pole geological mapping , 2004 .

[56]  Elisabetta Pierazzo,et al.  Cometary Delivery of Biogenic Elements to Europa , 2002 .

[57]  K. Hand,et al.  Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds , 2010, Proceedings of the International Astronomical Union.

[58]  Francis Nimmo,et al.  Chaotic Terrain on Europa , 2009 .

[59]  Gabriel Tobie,et al.  Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting , 2002 .

[60]  R. E. Johnson,et al.  The ion environment near Europa and its role in surface energetics , 2002 .

[61]  Gary D. Clow,et al.  A summary of Viking sample-trench analyses for angles of internal friction and cohesions , 1982 .

[62]  B. Tattitch,et al.  Combined microthermometric and Raman spectroscopic technique to determine the salinity of H2O–CO2–NaCl fluid inclusions based on clathrate melting , 2011 .

[63]  A. Lane,et al.  Ice chemistry on the Galilean satellites , 1998 .

[64]  B. R. Tufts,et al.  Evidence for a subsurface ocean on Europa , 1998, Nature.

[65]  D. Ming,et al.  Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site , 2009, Science.

[66]  G. Kminek,et al.  Detecting Pyrolysis Products from Bacteria on Mars , 2001 .

[67]  R. Pappalardo,et al.  Conamara Chaos Region, Europa: Reconstruction of mobile polygonal ice blocks , 1998 .

[68]  Chi Hong Chio,et al.  The hydrates and deuterates of ferrous sulfate (FeSO4): a Raman spectroscopic study , 2007 .

[69]  Christopher P. McKay,et al.  Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars , 2010 .

[70]  Everett L. Shock,et al.  A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa , 2004 .

[71]  M. Zolotov,et al.  On the Chemical Composition of Europa's Icy Shell, Ocean, and Underlying Rocks , 2009 .

[72]  J. B. Dalton,et al.  Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design. , 2003, Astrobiology.

[73]  B. Gurevich,et al.  Characteristic frequencies of seismic attenuation due to wave-induced fluid flow in fractured porous media , 2006 .

[74]  R. Greeley,et al.  Impact Features on Europa: Results of the Galileo Europa Mission (GEM) , 2001 .

[75]  B. Romanowicz,et al.  Long-period seismology on Europa: 2. Predicted seismic response , 2006 .

[76]  Robert T. Pappalardo,et al.  Geology of Europa , 2004 .

[77]  W. D. Parkinson Introduction to geomagnetism , 1983 .

[78]  S. Fagents Considerations for effusive cryovolcanism on Europa: The post‐Galileo perspective , 2003 .

[79]  W. McKinnon,et al.  Convective instability in Europa's floating ice shell , 1997 .

[80]  Robert M. Nelson,et al.  Evidence for sulphur implantation in Europa's UV absorption band , 1981, Nature.

[81]  J. Head,et al.  Brine mobilization during lithospheric heating on Europa: Implications for formation of chaos terrain, lenticula texture, and color variations , 1999 .

[82]  K. Zahnle,et al.  Transfer of mass from Io to Europa and beyond due to cometary impacts , 2008 .

[83]  R. W. Carlsona,et al.  Distribution of hydrate on Europa : Further evidence for sulfuric acid hydrate , 2005 .

[84]  R. Alley,et al.  Seismic observations of transient subglacial water‐flow beneath MacAyeal Ice Stream, West Antarctica , 2009 .

[85]  A. Lane,et al.  Chemical schemes for surface modification of icy satellites: A road map , 1997 .

[86]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[87]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[88]  J. Lane,et al.  Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site , 2011 .

[89]  Andrew Pohorille,et al.  The NASA Astrobiology Roadmap. , 2008, Astrobiology.

[90]  R. Greeley,et al.  The Exploration History of Europa , 2009 .

[91]  M. Kivelson,et al.  Limits on an intrinsic dipole moment in Europa , 2004 .

[92]  Michael H. Wong,et al.  Radiation effects on the surfaces of the Galilean satellites , 2004 .

[93]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[94]  Werner F. Kuhs,et al.  Raman spectroscopic study on the spatial distribution of nitrogen and oxygen in natural ice clathrates and their decomposition to air bubbles , 1996 .

[95]  A. Showman,et al.  A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: Implications for Europa and Enceladus , 2008 .

[96]  Kenneth H. Nealson,et al.  Astrobiology and the Potential for Life on Europa , 2009 .

[97]  J. Shirley,et al.  Europa’s ridged plains and smooth low albedo plains: Distinctive compositions and compositional gradients at the leading side–trailing side boundary , 2010 .

[98]  T. McCord,et al.  Brines exposed to Europa surface conditions , 2002 .

[99]  Lynda B. M. Ellis,et al.  Microbial Genomics and the Periodic Table , 2004, Applied and Environmental Microbiology.

[100]  J. B. Dalton Linear mixture modeling of Europa's non‐ice material based on cryogenic laboratory spectroscopy , 2007 .

[101]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[102]  Kevin Zahnle,et al.  Secondary and sesquinary craters on Europa , 2008 .

[103]  M. Kivelson,et al.  Wave activity in Europa's wake: Implications for ion pickup , 2001 .

[104]  S. Constable,et al.  Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity , 2004 .

[105]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[106]  S. Horikawa,et al.  A relationship between ion balance and the chemical compounds of salt inclusions found in the Greenland Ice Core Project and Dome Fuji ice cores , 2008 .

[107]  Pierre-Alain Monnard,et al.  Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. , 2002, Astrobiology.

[108]  C. Russell,et al.  Mass loading of Saturn's magnetosphere near Enceladus , 2007 .

[109]  W. Johnson,et al.  Correlation between the cohesive energy and the onset of radiation-enhanced diffusion in ion mixing , 1986 .

[110]  P. Conrad,et al.  The Mars Science Laboratory Organic Check Material , 2012 .

[111]  J. Bassis,et al.  Episodic propagation of a rift on the Amery Ice Shelf, East Antarctica , 2005 .

[112]  B. Romanowicz,et al.  Long‐period seismology on Europa: 1. Physically consistent interior models , 2006 .

[113]  Lijie Han,et al.  Numerical simulations of convection in Europa's ice shell: Implications for surface features , 2003 .

[114]  G. McMurty,et al.  Life in the calcium chloride environment of Don Juan Pond, Antarctica , 1979, Nature.

[115]  Nicholas C. Makris,et al.  Probing Europa's interior with natural sound sources , 2003 .

[116]  K. Nealson The limits of life on Earth and searching for life on Mars. , 1997, Journal of geophysical research.

[117]  S. Kattenhorn,et al.  A revised model for cycloid growth mechanics on Europa: Evidence from surface morphologies and geometries , 2005 .

[118]  Ronald A. Nieman,et al.  The Organic Content of the Tagish Lake Meteorite , 2001, Science.

[119]  C. Sonett,et al.  Apollo 12 Magnetometer: Measurement of a Steady Magnetic Field on the Surface of the Moon , 1970, Science.

[120]  R. Greeley,et al.  Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission , 1999 .

[121]  James Charles Granahan,et al.  Hydrated salt minerals on Europa's surface from the Galileo near‐infrared mapping spectrometer (NIMS) investigation , 1999 .

[122]  K. Zahnle,et al.  Cratering rates on the Galilean satellites. , 1998, Icarus.

[123]  Thomas M. Orlando,et al.  The chemical nature of Europa surface material and the relation to a subsurface ocean , 2005 .

[124]  B. Poolman,et al.  The Role of Biomacromolecular Crowding, Ionic Strength, and Physicochemical Gradients in the Complexities of Life's Emergence , 2009, Microbiology and Molecular Biology Reviews.

[125]  L. Prockter,et al.  Characterizing electron bombardment of Europa’s surface by location and depth , 2012 .

[126]  Joseph A. Burns,et al.  Evolution of Lineaments on Europa: Clues from Galileo Multispectral Imaging Observations , 1998 .

[127]  R. Carlson,et al.  Sulfuric Acid Production on Europa: The Radiolysis of Sulfur in Water Ice , 2002 .

[128]  H. Eicken,et al.  The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. , 2003, Astrobiology.

[129]  S. Squyres,et al.  Ice diapirs on Europa: Implications for liquid water , 1998 .

[130]  G. W. Patterson,et al.  Active formation of ‘chaos terrain’ over shallow subsurface water on Europa , 2011, Nature.

[131]  D. Pieri,et al.  Geologic mapping of Europa. , 1981 .

[132]  C. Chyba,et al.  Energy for microbial life on Europa , 2000, Nature.

[133]  L. Prockter,et al.  Morphology and Evolution of Europa's Ridges and Bands , 2009 .

[134]  Keith S. Noll,et al.  The albedo spectrum of Europa from 2200 Å to 3300 Å , 1995 .

[135]  J. Burns,et al.  Galileo's First Images of Jupiter and the Galilean Satellites , 1996, Science.

[136]  Richard Greenberg,et al.  Acidification of Europa's subsurface ocean as a consequence of oxidant delivery. , 2012, Astrobiology.

[137]  P. Schenk Thickness consb ints on the icy shells of the galilean satellites from a comparison of crater shapes , 2022 .

[138]  A. Showman,et al.  Effects of plasticity on convection in an ice shell: Implications for Europa , 2004 .

[139]  Kenneth L. Tanaka,et al.  Geologic Stratigraphy and Evolution of Europa's Surface , 2009 .

[140]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[141]  Henry B. Garrett,et al.  Europa's Radiation Environment and Its Effects on the Surface , 2009 .

[142]  R E Johnson,et al.  Hydrogen peroxide on the surface of Europa. , 1999, Science.

[143]  James Charles Granahan,et al.  Non‐water‐ice constituents in the surface material of the icy Galilean satellites from the Galileo near‐infrared mapping spectrometer investigation , 1998 .

[144]  B. Clark,et al.  Effects of the Phoenix Lander descent thruster plume on the Martian surface , 2008 .

[145]  J. Amend,et al.  A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro‐organisms in oxic and anoxic environments , 2005 .

[146]  R. E. Johnson,et al.  Sulfuric acid on Europa and the radiolytic sulfur cycle. , 1999, Science.

[147]  R. Greeley,et al.  Locating potential biosignatures on Europa from surface geology observations. , 2003, Astrobiology.

[148]  S. D. Kadel,et al.  Chaos on Europa , 1999 .

[149]  Marla H. Moore,et al.  Studies of proton-irradiated SO2 at low temperatures implications for Io , 1984 .

[150]  Richard Greenberg Transport rates of radiolytic substances into Europa's ocean: implications for the potential origin and maintenance of life. , 2010, Astrobiology.

[151]  J. Head,et al.  Evaluation of models for the formation of chaotic terrain on Europa , 2000 .

[152]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[153]  L. Hood,et al.  Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian , 2005 .

[154]  W. Calvin,et al.  Condensed O2 on Europa and Callisto , 2002 .

[155]  S. Vance,et al.  Oceanography of an Ice-Covered Moon , 2009 .

[156]  J. Spencer Thermal segregation of water ice on the Galilean satellites , 1987 .

[157]  Christopher T. Russell,et al.  Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment , 1999 .

[158]  Robert T. Pappalardo,et al.  Europa: Morphological characteristics of ridges and triple bands from Galileo data (E4 and E6) and assessment of a linear diapirism model , 1999 .

[159]  J. B. Dalton,et al.  Europa’s Surface Composition , 2009 .

[160]  M. Moore,et al.  Infrared Study of Ion-Irradiated Water-Ice Mixtures with Hydrocarbons Relevant to Comets , 1998 .

[161]  Thomas M. McCollom,et al.  Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa , 1999 .

[162]  Timothy J. Lee,et al.  Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts , 2013 .

[163]  A. McEwen,et al.  Multispectral Terrain Analysis of Europa from Galileo Images , 1998 .

[164]  Kevin B. Jones,et al.  Large Impact Features on Europa: Results of the Galileo Nominal Mission , 1998 .

[165]  E. Turtle,et al.  Europa's Impact Craters: Probes of the Icy Shell , 2009 .

[166]  J. C. Savage,et al.  Icequakes on the Athabasca Glacier , 1970 .

[167]  R. Carlson,et al.  The radiolysis of SO2 and H2S in water ice: Implications for the icy jovian satellites , 2007 .

[168]  R. Pappalardo,et al.  Topographic variations in chaos on Europa: Implications for diapiric formation , 2004 .

[169]  T. McCord,et al.  Widespread CO2 and other non‐ice compounds on the anti‐Jovian and trailing sides of Europa from Galileo/NIMS observations , 2007 .

[170]  B. R. Tufts,et al.  Lithospheric Dilation on Europa , 2000 .

[171]  F. Leblanc,et al.  Composition and Detection of Europa's Sputter-Induced Atmosphere , 2007 .

[172]  Carolyn C. Porco,et al.  Association of the jets of Enceladus with the warmest regions on its south-polar fractures , 2007, Nature.

[173]  H. Klein The Viking mission and the search for life on Mars , 1979 .

[174]  Jeffrey S. Kargel,et al.  Spectral comparison of heavily hydrated salts with disrupted terrains on Europa , 2005 .

[175]  Charles R. Bentley,et al.  The Structure of Antarctica and its Ice Cover , 1964 .