Optimal Kronecker Product Approximation of Block Toeplitz Matrices

This paper considers the problem of finding n × n matrices Ak and Bk that minimize $||T - \sum A_k \otimes B_k||_F$, where $\otimes$ denotes Kronecker product and T is a banded n × n block Toeplitz matrix with banded n × n Toeplitz blocks. It is shown that the optimal Ak and Bk are banded Toeplitz matrices, and an efficient algorithm for computing the approximation is provided. An image restoration problem from the Hubble Space Telescope (HST) is used to illustrate the effectiveness of an approximate SVD preconditioner constructed from the Kronecker product decomposition.

[1]  C. Loan,et al.  Approximation with Kronecker Products , 1992 .

[2]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[3]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[4]  Aggelos K. Katsaggelos,et al.  Iterative identification and restoration of images , 1990, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[5]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[6]  J. Nagy,et al.  KRONECKER PRODUCT AND SVD APPROXIMATIONS IN IMAGE RESTORATION , 1998 .

[7]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[8]  L. Eldén Algorithms for the regularization of ill-conditioned least squares problems , 1977 .

[9]  Lothar Reichel,et al.  Application of ADI Iterative Methods to the Restoration of Noisy Images , 1996, SIAM J. Matrix Anal. Appl..

[10]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[11]  N. Pitsianis The Kronecker Product in Approximation and Fast Transform Geration , 1997 .

[12]  E. Angel,et al.  Restoration of images degraded by spatially varying pointspread functions by a conjugate gradient method. , 1978, Applied optics.

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[15]  J. Nagy,et al.  Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques , 1996 .

[16]  Kyle A. Gallivan,et al.  High-performance algorithms to solve toeplitz and block toeplitz matrices , 1996 .

[17]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[18]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[19]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..