THE INTERNATIONAL LASER RANGING SERVICE

The International Laser Ranging Service (ILRS) was established in September 1998 to support programs in geodetic, geophysical, and lunar research activities and to provide the International Earth Rotation Service (IERS) with products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). Now in operation for nearly two years, the ILRS develops (1) the standards and specifications necessary for product consistency, and (2) the priorities and tracking strategies required to maximize network efficiency. The Service collects, merges, analyzes, archives and distributes satellite and lunar laser ranging data to satisfy a variety of scientific, engineering, and operational needs and encourages the application of new technologies to enhance the quality, quantity, and cost effectiveness of its data products. The ILRS works with (1) new satellite missions in the design and building of retroreflector targets to maximize data quality and quantity, and (2) science programs to optimize scientific data yield. The ILRS is organized into permanent components: (1) a Governing Board, (2) a Central Bureau, (3) Tracking Stations and Subnetworks, (4) Operations Centers, (5) Global and Regional Data Centers, and (6) Analysis, Lunar Analysis, and Associate Analysis Centers. The Governing Board, with broad representation from the international Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) community, provides overall guidance and defines service policies, while the Central Bureau oversees and coordinates the daily service activities, maintains scientific and technological data bases, and facilitates communications. Active Working Groups in (1) Missions, (2) Networks and Engineering, (3) Data Formats and Procedures, (4) Analysis, and (5) Signal Processing provide key operational and technical expertise to better exploit current capabilities and to challenge the ILRS participants to keep pace with evolving user needs. The ILRS currently includes more than 40 SLR stations, routinely tracking about 20 retroreflector-equipped satellites and the Moon in support of user needs.