Investigations into the Biosynthesis, Regulation, and Self‐Resistance of Toxoflavin in Pseudomonas protegens Pf‐5

Pseudomonas spp. are prolific producers of natural products from many structural classes. Here we show that the soil bacterium Pseudomonas protegens Pf‐5 is capable of producing trace levels of the triazine natural product toxoflavin (1) under microaerobic conditions. We evaluated toxoflavin production by derivatives of Pf‐5 with deletions in specific biosynthesis genes, which led us to propose a revised biosynthetic pathway for toxoflavin that shares the first two steps with riboflavin biosynthesis. We also report that toxM, which is not present in the well‐characterized cluster of Burkholderia glumae, encodes a monooxygenase that degrades toxoflavin. The toxoflavin degradation product of ToxM is identical to that of TflA, the toxoflavin lyase from Paenibacillus polymyxa. Toxoflavin production by P. protegens causes inhibition of several plant‐pathogenic bacteria, and introduction of toxM into the toxoflavin‐sensitive strain Pseudomonas syringae DC3000 results in resistance to toxoflavin.

[1]  P. Damme,et al.  On toxoflavin, the yellow poison of pseudomonas cocovenenans , 2010 .

[2]  I. Paulsen,et al.  Reciprocal Regulation of Pyoluteorin Production with Membrane Transporter Gene Expression in Pseudomonas fluorescens Pf-5 , 2005, Applied and Environmental Microbiology.

[3]  K. Stern,et al.  Oxidation-reduction potentials of toxoflavin. , 1935, The Biochemical journal.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Ingyu Hwang,et al.  Toxoflavin Produced by Burkholderia glumae Causing Rice Grain Rot Is Responsible for Inducing Bacterial Wilt in Many Field Crops. , 2003, Plant disease.

[6]  Ronald M. Atlas,et al.  Handbook of microbiological media , 1993 .

[7]  E. Koonin,et al.  Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world , 2008, Nucleic acids research.

[8]  W. Eisenreich,et al.  Biosynthesis of riboflavin. , 2001, Vitamins and hormones.

[9]  T. Begley,et al.  Identification of the product of toxoflavin lyase: degradation via a Baeyer-Villiger oxidation. , 2012, Journal of the American Chemical Society.

[10]  J. Loper,et al.  Genomics of secondary metabolite production by Pseudomonas spp. , 2009, Natural product reports.

[11]  Karl A. Hassan,et al.  Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. , 2010, Environmental microbiology.

[12]  T. Black An improved, large-scale synthesis of xanthothricin and reumycin† , 1987 .

[13]  I. Hwang,et al.  Structural and Functional Analysis of Phytotoxin Toxoflavin-Degrading Enzyme , 2011, PloS one.

[14]  J. Loper,et al.  Phloroglucinol mediates cross‐talk between the pyoluteorin and 2,4‐diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf‐5 , 2011, Molecular microbiology.

[15]  I. Yamaguchi,et al.  Toxoflavin is an Essential Factor for Virulence of Burkholderia glumae Causing Rice Seedling Rot Disease , 1998 .

[16]  S. Scheu,et al.  Full-Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas protegens CHA0 , 2014, Genome Announcements.

[17]  I. Paulsen,et al.  Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS. , 2013, Environmental microbiology.

[18]  I. Paulsen,et al.  Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5 , 2009, BMC Microbiology.

[19]  Yun-jung Kim,et al.  A novel light-dependent selection marker system in plants. , 2011, Plant biotechnology journal.

[20]  Hiroaki Suga,et al.  Quorum sensing and the LysR‐type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae , 2004, Molecular microbiology.

[21]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[22]  A. Bacher,et al.  Biosynthesis of vitamin b2 (riboflavin). , 2000, Annual review of nutrition.

[23]  Temple F. Smith,et al.  Diversity of WD-repeat proteins. , 2008, Sub-cellular biochemistry.

[24]  T. Dierks,et al.  Expression, Localization, Structural, and Functional Characterization of pFGE, the Paralog of the Cα-Formylglycine-generating Enzyme* , 2005, Journal of Biological Chemistry.

[25]  King Eo,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954 .

[26]  T. Dierks,et al.  Molecular Characterization of the Human Cα-formylglycine-generating Enzyme* , 2005, Journal of Biological Chemistry.

[27]  B. Levenberg,et al.  On the biosynthesis of toxoflavin, an azapteridine antibiotic produced by Pseudomonas cocovenenans. , 1966, Journal of Biological Chemistry.

[28]  W. Mertens,et al.  Das Toxoflavin, der gelbe Giftstoff der Bongkrek , 2010 .

[29]  L. Farinelli,et al.  Whole-Genome Shotgun Sequence of Pseudomonas viridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana , 2013, Genome Announcements.

[30]  F. O'Gara,et al.  The putative permease PhlE of Pseudomonas fluorescens F113 has a role in 2,4-diacetylphloroglucinol resistance and in general stress tolerance. , 2004, Microbiology.

[31]  J. Berger,et al.  Function and Structure of a Prokaryotic Formylglycine-generating Enzyme*S⃞ , 2008, Journal of Biological Chemistry.

[32]  W. Berends,et al.  On the origin of the toxicity of toxoflavin. , 1961, Biochimica et biophysica acta.

[33]  T. Begley,et al.  Toxoflavin lyase requires a novel 1-His-2-carboxylate facial triad. , 2011, Biochemistry.

[34]  H. Schweizer,et al.  A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. , 1998, Gene.

[35]  D. Groth,et al.  Burkholderia glumae and B. gladioli Cause Bacterial Panicle Blight in Rice in the Southern United States. , 2009, Plant disease.

[36]  Hening Lin,et al.  Dph7 Catalyzes a Previously Unknown Demethylation Step in Diphthamide Biosynthesis , 2014, Journal of the American Chemical Society.

[37]  J. Loper,et al.  Positive Autoregulation and Signaling Properties of Pyoluteorin, an Antibiotic Produced by the Biological Control Organism Pseudomonas fluorescens Pf-5 , 2004, Applied and Environmental Microbiology.

[38]  T. Nagamatsu,et al.  Syntheses of 3-substituted 1-methyl-6-phenylpyrimido[5,4-e]-1,2,4-triazine-5,7(1H,6H)-diones (6-phenyl analogs of toxoflavin) and their 4-oxides, and evaluation of antimicrobial activity of toxoflavins and their analogs. , 1993, Chemical & pharmaceutical bulletin.

[39]  Fumihiko Suzuki,et al.  Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae , 2004, Journal of General Plant Pathology.