Electron transfer and arrangement of the redox cofactors in photosystem I

2. Summary of some basic features of photosystem I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 2.1. Composition and architecture of the photosystem I complex . . . . . . . . . . . . . . . . . . . 324 2.2. Antenna system and excitation energy transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 2.3. The electron transport chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 2.4. Relationship with other ‘type I’ reaction centres . . . . . . . . . . . . . . . . . . . . . . . . . . 326

[1]  Joshua Jortner,et al.  Temperature dependent activation energy for electron transfer between biological molecules , 1976 .

[2]  L. Krishtalik Activationless electron transfer in the reaction centre of photosynthesis , 1989 .

[3]  J. Bolton,et al.  Flash photolysis electron spin resonance studies of the electron acceptor species at low temperatures in photosystem I of spinach subchloroplast particles. , 1975, Biochimica et biophysica acta.

[4]  C. Bock,et al.  Nanosecond electron transfer kinetics in photosystem I as obtained from transient EPR at room temperature , 1989 .

[5]  P. Mathis,et al.  Influence of temperature on photosystem II electron transfer reactions. , 1981, Biochimica et biophysica acta.

[6]  G. Dismukes,et al.  The orientation of membrane bound radicals: an EPR investigation of magnetically ordered spinach chloroplasts. , 1978, Biochimica et biophysica acta.

[7]  J. Norris,et al.  The ordering of the zero field triplet spin sublevels in the chlorophylls. A magnetophotoselection study , 1977 .

[8]  H. Conjeaud,et al.  RAPID REDUCTION OF P‐700 PHOTOOXIDIZED BY A FLASH AT LOW TEMPERATURE IN SPINACH CHLOROPLASTS , 1979 .

[9]  J. Gaillard,et al.  NMR of Chromatium vinosum ferredoxin: evidence for structural inequivalence and impeded electron transfer between the two [4Fe-4S] clusters. , 1995, Biochemistry.

[10]  C. Betzel,et al.  X-ray characterization of single crystals of the reaction center I of water splitting photosynthesis , 1988 .

[11]  R. Clayton Photosynthesis: Physical Mechanisms and Chemical Patterns , 1981 .

[12]  B. Møller,et al.  Comparison of the EPR properties of photosystem I iron-sulphur centres A and B in spinach and barley. , 1981, Biochimica et biophysica acta.

[13]  Y. Takahashi,et al.  Functional subunit structure of photosystem 1 reaction center in Synechococcus sp. , 1982, Archives of biochemistry and biophysics.

[14]  W. Lubitz,et al.  3-mm High-field EPR on semiquinone radical anions Q.cntdot.- related to photosynthesis and on the primary donor P.cntdot.+ and acceptor QA.cntdot.- in reaction centers of Rhodobacter sphaeroides R-26 , 1993 .

[15]  K. Steinback Molecular Biology of the Photosynthetic Apparatus , 1986 .

[16]  J. Biggins,et al.  Functional role of vitamin K in photosystem I of the cyanobacterium Synechocystis 6803. , 1988, Biochemistry.

[17]  M. Evans,et al.  Double-reduction of A1 abolishes the EPR signal attributed to A−1: Evidence for C2 symmetry in the Photosystem I reaction centre , 1993 .

[18]  P. Warren,et al.  Characterization of a photosystem I core containing P700 and intermediate electron acceptor A1. , 1990, Biochemistry.

[19]  J. Zhao,et al.  Characterization of the [3Fe-4S] and [4Fe-4S] clusters in unbound PsaC mutants C14D and C51D. Midpoint potentials of the single [4Fe-4S] clusters are identical to FA and FB in bound PsaC of photosystem I. , 1993, Biochemistry.

[20]  A. Hoff,et al.  High-resolution absorbance-difference spectra of the triplet state of the primary donor P-700 in Photosystem I subchloroplast particles measured with absorbance-detected magnetic resonance at 1.2 K. Evidence that P-700 is a dimeric chlorophyll complex , 1983 .

[21]  P. Warren,et al.  PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. , 1991, Biochemistry.

[22]  B. Kê The rise time of photoreduction, difference spectrum, and oxidation-reduction potential of P430. , 1972, Archives of biochemistry and biophysics.

[23]  M. Evans,et al.  ESR characteristics of Photosystem I in deuterium oxide: Further evidence that electron acceptor A1 is a quinone , 1987 .

[24]  W. Lubitz,et al.  Site-directed mutagenesis of conserved histidines in the helix VIII domain of PsaB impairs assembly of the photosystem I reaction center without altering spectroscopic characteristics of P700. , 1995, Biochemistry.

[25]  Y. Jung,et al.  A mixed-ligand iron-sulfur cluster (C556SPaB or C565SPsaB) in the Fx-binding site leads to a decreased quantum efficiency of electron transfer in photosystem I. , 1995, Biophysical journal.

[26]  J. Norris,et al.  Transient EPR of light-induced spin-correlated radical pairs. Manifestation of zero quantum coherence , 1994 .

[27]  R. Lozier,et al.  Redox titration of the primary electron acceptor of Photosystem I in spinach chloroplasts , 1974 .

[28]  Joshua Jortner,et al.  The energy gap law for radiationless transitions in large molecules , 1970 .

[29]  D. Bryant,et al.  Evidence for a mixed-ligand [4Fe-4S] cluster in the C14D mutant of PsaC. Altered reduction potentials and EPR spectral properties of the FA and FB clusters on rebinding to the P700-FX core. , 1995, Biochemistry.

[30]  G. Hauska,et al.  Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Sétif,et al.  Absorption studies of Photosystem I photochemistry in the absence of vitamin K-1 , 1987 .

[32]  Robert Eugene Blankenship,et al.  Universality of energy and electron transfer processes in photosystem I. , 1995, Biochemistry.

[33]  B. Hecks,et al.  INVARIABLE TRAPPING TIMES IN PHOTOSYSTEM I UPON EXCITATION OF MINOR LONG‐WAVELENGTH‐ABSORBING PIGMENTS , 1993 .

[34]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[35]  J. Jortner Dynamics of electron transfer in bacterial photosynthesis. , 1980, Biochimica et biophysica acta.

[36]  H. Bottin,et al.  Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I in Synechocystis sp. PCC 6803: evidence for submicrosecond and microsecond kinetics. , 1994, Biochemistry.

[37]  A. Hoff,et al.  The orientation of the triplet axes with respect to the optical transition moments in (bacterio) chlorophylls , 1995 .

[38]  C. Betzel,et al.  Three-dimensional structure of system I of photosynthesis at 6 Å resolution , 1993, Nature.

[39]  R. Herrmann,et al.  Genes encoding eleven subunits of photosystem I from the thermophilic cyanobacterium Synechococcus sp. , 1993, Gene.

[40]  S. Snyder,et al.  Direct assignment of vitamin K1 as the secondary acceptor A1 in photosystem I. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  P. Sétif,et al.  Near Infra-Red Absorption Spectra of the Chlorophyll a Cations and Triplet State in vitro and in vivo , 1981 .

[42]  S. Itoh,et al.  Extraction of vitamin K-1 from Photosystem I particles by treatment with diethyl ether and its effects on the A−1 EPR signal and System I photochemistry , 1987 .

[43]  M. Evans,et al.  Extraction of electron acceptor A1 from pea photosystem I , 1987 .

[44]  R. Lozier,et al.  Light-induced absorbance changes in chloroplasts mediated by photosystem I and photosystem II at low temperature. , 1974, Biochimica et biophysica acta.

[45]  W. Lubitz,et al.  Differences in the binding of the primary quinone receptor in Photosystem I and reaction centres of Rhodobacter sphaeroides-R26 studied with transient EPR spectroscopy , 1995 .

[46]  P. J. O'malley,et al.  ENDOR and special triple resonance studies of chlorophyll cation radicals in photosystem 2. , 1994, Biochemistry.

[47]  M. Evans,et al.  ENDOR and special triple resonance spectroscopy of A1.- of photosystem 1. , 1995, Biochemistry.

[48]  H. V. van Gorkom,et al.  Thermodynamical and structural information on photosynthetic systems obtained from electroluminescence kinetics. , 1990, Biophysical journal.

[49]  M. Mimuro,et al.  Magnetic circular dichroism investigation on chromophores in reaction centers of photosystem I and II of green plant photosynthesis , 1995 .

[50]  R. Cole,et al.  Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .

[51]  A. Bearden,et al.  Correlation of reaction-center chlorophyll (P-700) oxidation and bound iron-sulfur protein photoreduction in chloroplast photosystem I at low temperatures. , 1976, Biochimica et biophysica acta.

[52]  K Schulten,et al.  Electron transfer and spin exchange contributing to the magnetic field dependence of the primary photochemical reaction of bacterial photosynthesis. , 1978, Biochimica et biophysica acta.

[53]  Tadashi Watanabe,et al.  Presence of two chlorophyll a' molecules at the core of photosystem I , 1992 .

[54]  C. M. Jones,et al.  The role of solvent viscosity in the dynamics of protein conformational changes. , 1992, Science.

[55]  P. Sétif,et al.  Flash-induced absorption changes in Photosystem I, Radical pair or triplet state formation? , 1981 .

[56]  A. Rutherford,et al.  The effect of ambient redox potential on the transient electron spin echo signals observed in chloroplasts and photosynthetic algae , 1982 .

[57]  M. Michel-beyerle,et al.  Inhomogeneity of Radical Pair Energies in Photosynthetic Reaction Centers Revealed by Differences in Recombination Dynamics of P+HA- When Detected in Delayed Emission and in Absorption , 1994 .

[58]  PHOTOSYNTHESIS: FROM LIGHT TO BIOSPHERE, VOL III , 1995 .

[59]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[60]  D. Devault,et al.  Quantum mechanical tunnelling in biological systems. , 1980, Quarterly reviews of biophysics.

[61]  G. Rius,et al.  The Different [Fe4S4]3+ and [Fe4S4]+ Species Created by .gamma. Irradiation in Single Crystals of the (Et4N)2[Fe4S4(SBenz)4] Model Compound: Their EPR Description and Their Biological Significance , 1994 .

[62]  P. Warren,et al.  Site-directed conversion of cysteine-565 to serine in PsaB of photosystem I results in the assembly of iron-sulfur [3Fe-4S] and iron-sulfur [4Fe-4S] clusters in Fx. A mixed-ligand iron-sulfur [4Fe-4S] cluster is capable of electron transfer to FA and FB , 1993 .

[63]  R. Farid,et al.  Electron transfer in proteins , 1993 .

[64]  B. Brunschwig,et al.  Rate-Constant Expressions for Nonadiabatic Electron-Transfer Reactions , 1987 .

[65]  S. Itoh,et al.  Reconstitution of the Photosystem I Secondary Quinone Acceptor (A1) in the P700-Fx Core Isolated from Synechococcus PCC 6301 , 1993 .

[66]  P. Sétif,et al.  Energy transfer and trapping in photosystem I , 1992 .

[67]  R. Goldstein,et al.  Effect of magnetic fields on the triplet state lifetime in photosynthetic reaction centers: Evidence for thermal repopulation of the initial radical pair. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Sétif,et al.  The oxidation-reduction potential of P-700 in chloroplast lamellae and subchloroplast particles. , 1980, Archives of biochemistry and biophysics.

[69]  D. Hall,et al.  The electron spin relaxation of the electron acceptors of photosystem I reaction centre studied by microwave power saturation. , 1979, Biochimica et biophysica acta.

[70]  W. Lockau,et al.  Phylloquinone copurifies with the large subunit of photosystem I , 1986 .

[71]  T. Kakitani,et al.  A possible new mechanism of temperature dependence of electron transfer in photosynthetic systems. , 1981, Biochimica et biophysica acta.

[72]  W. Lubitz,et al.  Transient EPR spectroscopy of the charge separated state P+Q− in photosynthetic reaction centers. Comparison of Zn-substituted Rhodobacter sphaeroides R-26 and Photosystem I , 1993 .

[73]  P. Fromme,et al.  Low-temperature EPR on single crystals of photosystem I: study of the iron-sulfur center FA , 1992 .

[74]  A. Hoff,et al.  Evidence for a new early acceptor in Photosystem I of plants. An ESR investigation of reaction center triplet yield and of the reduced intermediary acceptors , 1983 .

[75]  P. Sétif,et al.  Absorption studies of primary reactions in Photosystem I. Yield and rate of formation of the P-700 triplet state , 1985 .

[76]  K. Yoshihara,et al.  Rates of Primary Electron Transfer Reactions in the Photosystem I Reaction Center Reconstituted with Different Quinones as the Secondary Acceptor , 1994 .

[77]  P. Warren,et al.  Charge recombination between P700+ and A1- occurs directly to the ground state of P700 in a photosystem I core devoid of FX, FB, and FA. , 1993, Biochemistry.

[78]  P. Mathis,et al.  Study of the PS I acceptor side by double and triple flash experiments , 1987 .

[79]  John H. Golbeck,et al.  Mutational Analysis of Photosystem I Polypeptides , 1996, The Journal of Biological Chemistry.

[80]  L. Andréasson,et al.  Electron Transport in Photosystems I and II , 1988 .

[81]  F. Capozzi,et al.  The iron-sulfur cluster (Fe4S4) centers in ferredoxins studied through proton and carbon hyperfine coupling. Sequence-specific assignments of cysteines in ferredoxins from Clostridium acidi urici and Clostridium pasteurianum , 1994 .

[82]  S. Snyder,et al.  Reconstitution and exchange of quinones in the A1 site of Photosystem I. An electron spin polarization electron paramagnetic resonance study , 1992 .

[83]  W. Maksymiec,et al.  Stark effect in P700, the primary electron donor of Photosystem I , 1991, FEBS letters.

[84]  A. Rutherford,et al.  ORIENTATION OF P700, THE PRIMARY ELECTRON DONOR OF PHOTOSYSTEM I , 1990 .

[85]  R. Kassner,et al.  A theoretical model for the effects of solvent and protein dielectric on the redox potentials of iron-sulfur clusters. , 1977, Journal of the American Chemical Society.

[86]  T. Vänngård,et al.  Photosystem I photochemistry at low temperature. Heterogeneity in pathways for electron transfer to the secondary acceptors and for recombination processes , 1984 .

[87]  John H. Golbeck,et al.  STRUCTURE AND FUNCTION OF PHOTOSYSTEM I , 1992 .

[88]  K. Sauer,et al.  Pigment systems and electron transport in chloroplasts. I. Quantum requirements for the two light reactions in spinach chloroplasts. , 1971, Biochimica et biophysica acta.

[89]  S. Ferguson-Miller,et al.  Photoaccumulation in Photosystem I Does Not Produce a Phylloquinone Radical , 1988 .

[90]  R. Cammack,et al.  Effect of temperature on the photoreduction of centres A and B in Photosystem I, and the kinetics of recombination , 1982 .

[91]  J. Bolton,et al.  Flash photolysis--electron spin resonance studies of the dynamics of photosystem I. 3. Temperature dependence of the decay of signal I. , 1974, Biochemical and biophysical research communications.

[92]  M. Evans,et al.  13 – Structure and Function of the Reaction Center Cofactors in Oxygenic Organisms , 1993 .

[93]  Kevin M Smith,et al.  Unusual picosecond 1(π, π∗) deactivation of ruffled nonplanar porphyrins , 1995 .

[94]  S. Itoh,et al.  Structure of the phylloquinone-binding (Q phi) site in green plant photosystem I reaction centers: the affinity of quinones and quinonoid compounds for the Q phi site. , 1991, Biochemistry.

[95]  M. C. Evans,et al.  Effects of glycerol on the redox properties of the electron acceptor complex in spinach photosystem I particles. , 1980, Biochimica et biophysica acta.

[96]  J. Barber The photosystems: structure, function and molecular biology. , 1992 .

[97]  R. Cammack,et al.  Primary electron acceptor complex of photosystem I in spinach chloroplasts , 1975, Nature.

[98]  J J Hopfield,et al.  Electron transfer between biological molecules by thermally activated tunneling. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J. Golbeck,et al.  Photosystem I charge separation in the absence of centers A and B. I. Optical characterization of center ‘A2’ and evidence for its association with a 64-kDa peptide , 1986 .

[100]  J. Biggins Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the A1 acceptor site of the photosystem I reaction center. , 1990, Biochemistry.

[101]  J. Golbeck The structure of photosystem I , 1993 .

[102]  Robert Eugene Blankenship,et al.  Observation of the reduction and reoxidation of the primary electron acceptor in photosystem I. , 1994, Biochemistry.

[103]  D. Bryant The Molecular Biology of Cyanobacteria , 1994, Advances in Photosynthesis.

[104]  J. Golbeck,et al.  Electron transfer from the acceptor A1 to the iron-sulfur centers in photosystem I as studied by transient EPR spectroscopy. , 1994, Biochemistry.

[105]  W. Lubitz,et al.  Evaluation of 2D-ESEEM data of 15N-labeled radical cations of the primary donor P700 in photosystem I and chlorophyll a , 1996 .

[106]  P. Fromme,et al.  Structure of Photosystem I: Suggestions on the docking sites for plastocyanin, ferredoxin and the coordination of P700 , 1994 .

[107]  A. Scozzafava,et al.  1H-NMR studies on partially and fully reduced 2(4Fe-4S) ferredoxin from Clostridium pasteurianum. , 1992, European journal of biochemistry.

[108]  C. Bock,et al.  Transient electron paramagnetic resonance of the triplet state of P700 in photosystem I: evidence for triplet delocalization at room temperature. , 1993, Biochemistry.

[109]  J. Hofrichter,et al.  Protein reaction kinetics in a room-temperature glass , 1995, Science.

[110]  W. Lockau,et al.  Bound electron acceptors of photosystem I Evidence against the identity of redox center A1 with phylloquinone , 1987 .

[111]  Joshua Jortner,et al.  Unidirectionality of charge separation in reaction centers of photosynthetic bacteria , 1988 .

[112]  P Q Sétif,et al.  Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I-ferredoxin complexes. , 1995, Biochemistry.

[113]  B. Toupance,et al.  Photoelectric characterization of forward electron transfer to iron-sulfur centers in photosystem I. , 1995, Biochemistry.

[114]  K. Sauer,et al.  Rapidly reversible flash‐induced electron transfer in a P‐700 chlorophyll—protein complex isolated with SDS , 1978 .

[115]  J. Golbeck Shared thematic elements in photochemical reaction centers. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[116]  J. Petersen,et al.  Anisotropic electron spin polarization of correlated spin pairs in photosynthetic reaction centers , 1989 .

[117]  R. Malkin On the function of two vitamin K1 molecules in the PS I electron acceptor complex , 1986 .

[118]  V. Shuvalov The study of the primary photoprocesses in photosystem I of chloroplasts. Recombination luminescence, chlorophyll triplet state and triplet-triplet annihilation. , 1976, Biochimica et biophysica acta.

[119]  M. Evans,et al.  Photoaccumulation in photosystem I does produce a phylloquinone (A1.-) radical. , 1996, Biochemistry.

[120]  D. Rasmussen,et al.  The glass transition in amorphous water. Application of the measurements to problems arising in cryobiology. , 1971, The Journal of physical chemistry.

[121]  V. Shuvalov,et al.  Picosecond absorbance changes upon selective excitation of the primary electron donor P-700 in Photosystem I , 1986 .

[122]  P. Sétif,et al.  Identification of electron-transfer reactions involving the acceptor A1 of photosystem I at room temperature , 1989 .

[123]  H. Hatanaka,et al.  Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. II. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. , 1993, Biochimica et biophysica acta.

[124]  R. Cammack,et al.  The EPR spectrum of iron—sulphur centre B in photosystem 1 of Phormidium laminosum , 1979, FEBS letters.

[125]  M. Evans Determination of the oxidation—reduction potential of the bound iron‐sulphur proteins of the primary electron acceptor complex of photosystem I in spinach chloroplasts , 1974 .

[126]  M. Evans,et al.  Optical difference spectrum of the electron acceptor Ao in photosystem I , 1985 .

[127]  H. Bottin,et al.  Inhibition of electron transfer from A0 to A1 in Photosystem I after treatment in darkness at low redox potential , 1991 .

[128]  D. Kleinfeld,et al.  Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. , 1984, Biochemistry.

[129]  P. Bertrand Application of electron transfer theories to biological systems , 1991 .

[130]  P. Sétif,et al.  Photosystem I photochemistry under highly reducing conditions: Study of the P700 triplet state formation from the secondary radical pair (P700+−A−1) , 1990 .

[131]  Robert Eugene Blankenship,et al.  Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[132]  K. Brettel,et al.  Magnetic-field effects on primary reactions in Photosystem I , 1987 .

[133]  J. Biggins,et al.  Light-induced charge separation in Photosystem I at low temperature is not influenced by vitamin K-1. , 1987, Biochimica et biophysica acta.

[134]  H. Matsubara,et al.  The protein responsible for center A/B in spinach photosystem I: isolation with iron-sulfur cluster(s) and complete sequence analysis. , 1988, Journal of Biochemistry (Tokyo).

[135]  R. Malkin Diazonium modification of Photosystem I. A specific effect on iron-sulfur Center B , 1984 .

[136]  M. Evans,et al.  Modulation analysis of the electron spin echo signals of in vivo oxidised primary donor 14N chlorophyll centres in bacterial, P870 and P960, and plant Photosystem I, P700, reaction centres , 1993 .

[137]  P. Fromme,et al.  Spectroscopic characterization of PS I core complexes from thermophilic Synechococcus sp , 1994, FEBS letters.

[138]  A. Rutherford,et al.  Photosynthetic reaction centres: variations on a common structural theme? , 1991, Trends in biochemical sciences.

[139]  H. Scheller,et al.  Reconstitution of Barley Photosystem I with Modified PSI-C Allows Identification of Domains Interacting with PSI-D and PSI-A/B (*) , 1996, The Journal of Biological Chemistry.

[140]  Robert Eugene Blankenship,et al.  Delayed fluorescence from Fe-S type photosynthetic reaction centers at low redox potential. , 1994, Biochemistry.

[141]  V. Shuvalov,et al.  Spectral and kinetic evidence for two early electron acceptors in photosystem I. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[142]  A. Bearden,et al.  Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[143]  W. Junge,et al.  DECONVOLUTION OF THE RED P700 DIFFERENCE SPECTRUM BASED ON A SET OF THREE GAUSSIAN COMPONENTS: FURTHER EVIDENCE FROM LITERATURE SPECTRA , 1982 .

[144]  B. Honig,et al.  On the calculation of electrostatic interactions in proteins. , 1985, Journal of molecular biology.

[145]  S. Katoh,et al.  SPECTRAL FEATURES OF THE BOUND ELECTRON ACCEPTOR A2 OF PHOTOSYSTEM I , 1982 .

[146]  Kurt Warncke,et al.  Nature of biological electron transfer , 1992, Nature.

[147]  J. Golbeck,et al.  Evidence that the intermediate electron acceptor, A2, in photosystem I is a bound iron-sulfur protein. , 1978, Biochimica et biophysica acta.

[148]  J. Onuchic,et al.  Protein electron transfer rates set by the bridging secondary and tertiary structure. , 1991, Science.

[149]  P. Sétif,et al.  Flash‐induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1 , 1986 .

[150]  K. Brettel New assignment for the 250 μs kinetics in Photosystem I: P-700+ recombines with A−1 (not F−x) , 1989 .

[151]  J. Golbeck Structure, function and organization of the Photosystem I reaction center complex. , 1987, Biochimica et biophysica acta.

[152]  K. L. Jones,et al.  Isolation of the intact photosystem I reaction center core containing P700 and iron‐sulfur center FX , 1988 .

[153]  J. Sanders-Loehr,et al.  The environment of Fe4S4 clusters in ferredoxins and high-potential iron proteins. New information from x-ray crystallography and resonance Raman spectroscopy , 1991 .

[154]  B. Kê,et al.  Electrochemical and spectro-kinetic evidence for an intermediate electron acceptor in photosystem I. , 1977, Biochimica et biophysica acta.

[155]  T. Kallas,et al.  The Cytochrome b6f Complex , 1994 .

[156]  Lester Packer,et al.  Current topics in bioenergetics , 1966 .

[157]  S. Krawczyk,et al.  Stark signals associated with the reduced and oxidized states of P700 in P700-enriched particles , 1993 .

[158]  J Deisenhofer,et al.  X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.

[159]  V. Shuvalov,et al.  Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in Photosystem I particles , 1986 .

[160]  P. Mathis,et al.  Kinetic studies on the function of A1 in the photosystem I reaction center , 1988 .

[161]  S. Itoh,et al.  Vitamin K1 (phylloquinone) restores the turnover of FeS centers in the ether‐extracted spinach PS I particles , 1989 .

[162]  P. Warren,et al.  Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of photosystem I. The photoreduction of FA is independent of FB. , 1992, Biochemistry.

[163]  A. Bearden,et al.  The orientation of the magnetic axes of membrane-bound iron-sulfur clusters and a cytochrome b-559 in the green halophilic alga Dunaliella parva , 1983 .

[164]  P. Sétif,et al.  Nanosecond electron transfer kinetics in photosystem I following substitution of quinones for vitamin K1 as studied by time resolved EPR , 1991, FEBS letters.

[165]  C. Schenck,et al.  TRIPLET FORMATION AND TRIPLET DECAY IN REACTION CENTERS FROM THE PHOTOSYNTHETIC BACTERIUM Rhodopseudomonas sphaeroides , 1984 .

[166]  J. Golbeck,et al.  Purification and properties of the intact P-700 and Fx-containing Photosystem I core protein. , 1989, Biochimica et biophysica acta.

[167]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[168]  B. Lagoutte,et al.  THE PHOTOSYSTEM I REACTION CENTER: STRUCTURE AND PHOTOCHEMISTRY , 1989 .

[169]  D. Bryant,et al.  Modified Ligands to FA and FB in Photosystem I , 1995, The Journal of Biological Chemistry.

[170]  K. Brettel,et al.  Forward electron transfer from phylloquinone A1 to iron-sulfur centers in spinach photosystem I. , 1993, Biochemistry.

[171]  R. Prince,et al.  Electrochemistry of ubiquinones , 1983 .

[172]  J. Bonnerjea,et al.  Identification of multiple components in the intermediary electron carrier complex of photosystem I , 1982 .

[173]  J. Breton,et al.  Primary charge separation in photosystem I: a two-step electrogenic charge separation connected with P700+A0- and P700+A1- formation. , 1994, Biochemistry.

[174]  A. Holzwarth,et al.  Energy transfer and charge separation kinetics in photosystem I: Part 1: Picosecond transient absorption and fluorescence study of cyanobacterial photosystem I particles. , 1993, Biophysical journal.

[175]  M. C. Evans,et al.  The role of the membrane-bound iron-sulphur centres A and B in the photosystem I reaction centre of spinach chloroplasts. , 1978, Biochimica et biophysica acta.

[176]  B. Kê,et al.  Oxidation-reduction potentials of bound iron-sulfur proteins of photosystem I. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[177]  J. V. van Best,et al.  Electron acceptors associated with P-700 in Triton solubilized photosystem I particles from spinach chloroplasts. , 1978, Biochimica et biophysica acta.

[178]  L. Shipman OSCILLATOR AND DIPOLE STRENGTHS FOR CHLOROPHYLL AND RELATED MOLECULES* , 1977 .

[179]  B. Robert,et al.  Is There a Proteic Substructure Common to all Photosynthetic Reaction Centers , 1990 .

[180]  P. Warren,et al.  Mutational analysis of the structure and biogenesis of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[181]  B. Mayne,et al.  Absorption Changes in Blue–green Algae at the Temperature of Liquid Nitrogen , 1966, Nature.

[182]  J. Golbeck,et al.  Electron spin resonance studies of the bound iron-sulfur centers in Photosystem I. Photoreduction of center A occurs in the absence of center B , 1982 .

[183]  Kazuhito Inoue,et al.  The sites of electron donation of Photosystem I to methyl viologen , 1990 .

[184]  E. Roux,et al.  Dichroism of chlorophyll aI absorption change at 700 nm using chloroplastsoriented in a magnetic field. , 1975, Biochemical and biophysical research communications.

[185]  M. Evans,et al.  Path of electron transfer in photosystem 1: direct evidence of forward electron transfer from A1 to Fe-Sx. , 1994, Biochemistry.

[186]  H. J. Gorkom,et al.  Thermodynamics of electron transport in Photosystem I studied by electric field-stimulated charge recombination , 1988 .

[187]  P. Brzezinski,et al.  Electrogenic light reactions in photosystem I: resolution of electron-transfer rates between the iron-sulfur centers. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[188]  W. Lovenberg Iron-sulfur proteins, , 1973 .

[189]  S. Snyder,et al.  Contribution of vitamin K1 to the electron spin polarization in spinach photosystem I. , 1990, Biochemistry.

[190]  Robert Eugene Blankenship,et al.  Time-resolved fluorescence and absorption spectroscopy of photosystem I. , 1994, Biochemistry.

[191]  R. Griffin,et al.  Measurement of the g-tensor of the P700+. signal from deuterated cyanobacterial photosystem I particles. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[192]  K. Brettel Electron transfer from A− 1 to an iron‐sulfur center with t = 200 ns at room temperature in photosystem I Characterization by flash absorption spectroscopy , 1988 .

[193]  J. Norris,et al.  An electron spin echo phase shift observed in photosynthetic algae: Possible evidence for dynamic radical pair interactions , 1980 .

[194]  A. Bearden,et al.  Primary photochemistry of Photosystem I in chloroplasts. Dynamics of reversible charge separation in open reaction centers at 25 K , 1983 .

[195]  J. Williams,et al.  Temperature dependence of the reorganization energy for charge recombination in the reaction center from Rhodobacter sphaeroides. , 1996, Biochemistry.

[196]  A. Hoff Electron spin polarization of photosynthetic reactants , 1984, Quarterly Reviews of Biophysics.

[197]  J. Golbeck Photosystem I in Cyanobacteria , 1994 .

[198]  W. Lubitz,et al.  ENDOR and ESEEM of the 15N labelled radical cations of chlorophyll a and the primary donor P700 in photosystem I , 1995 .