Semiparametric Bayesian Inference for Local Extrema of Functions in the Presence of Noise

There is a wide range of applications where the local extrema of a function are the key quantity of interest. However, there is surprisingly little work on methods to infer local extrema with uncertainty quantification in the presence of noise. By viewing the function as an infinite-dimensional nuisance parameter, a semiparametric formulation of this problem poses daunting challenges, both methodologically and theoretically, as (i) the number of local extrema may be unknown, and (ii) the induced shape constraints associated with local extrema are highly irregular. In this article, we address these challenges by suggesting an encompassing strategy that eliminates the need to specify the number of local extrema, which leads to a remarkably simple, fast semiparametric Bayesian approach for inference on local extrema. We provide closed-form characterization of the posterior distribution and study its large sample behaviors under this encompassing regime. We show a multi-modal Bernstein-von Mises phenomenon in which the posterior measure converges to a mixture of Gaussians with the number of components matching the underlying truth, leading to posterior exploration that accounts for multi-modality. We illustrate the method through simulations and a real data application to event-related potential analysis.

[1]  Debdeep Pati,et al.  Frequentist coverage and sup-norm convergence rate in Gaussian process regression , 2017, 1708.04753.

[2]  Marina Vannucci,et al.  Bayesian inference for stationary points in Gaussian process regression models for event‐related potentials analysis , 2020, Biometrics.

[3]  T Gasser,et al.  The analysis of the EEG , 1996, Statistical methods in medical research.

[4]  G. Wahba Spline models for observational data , 1990 .

[5]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[6]  P. Davies,et al.  Local Extremes, Runs, Strings and Multiresolution , 2001 .

[7]  M. Wainwright,et al.  Sampled forms of functional PCA in reproducing kernel Hilbert spaces , 2011, 1109.3336.

[8]  I. Castillo A semiparametric Bernstein–von Mises theorem for Gaussian process priors , 2012 .

[9]  S. Walker,et al.  A Bayesian approach to non‐parametric monotone function estimation , 2009 .

[10]  Mary C. Meyer INFERENCE USING SHAPE-RESTRICTED REGRESSION SPLINES , 2008, 0811.1705.

[11]  Rui Liu,et al.  Nonparametric Inference for Local Extrema with Application to Oligonucleotide Microarray Data in Yeast Genome , 2006, Biometrics.

[12]  J. Rousseau,et al.  A Bernstein–von Mises theorem for smooth functionals in semiparametric models , 2013, 1305.4482.

[13]  A. Egner,et al.  Resolution of λ /10 in fluorescence microscopy using fast single molecule photo-switching , 2007 .

[14]  V. A. Menegatto,et al.  Reproducing properties of differentiable Mercer‐like kernels , 2012 .

[15]  Christian Eggeling,et al.  Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters , 2007, Biophysical journal.

[16]  Thomas S. Shively,et al.  Nonparametric function estimation subject to monotonicity, convexity and other shape constraints , 2011 .

[17]  Yongdai Kim The Bernstein–von Mises theorem for the proportional hazard model , 2006, math/0611230.

[18]  J. Ramsay Estimating smooth monotone functions , 1998 .

[19]  L. Devroye,et al.  The total variation distance between high-dimensional Gaussians , 2018, 1810.08693.

[20]  Van Der Vaart,et al.  The Bernstein-Von-Mises theorem under misspecification , 2012 .

[21]  Ding-Xuan Zhou,et al.  Learning Theory: An Approximation Theory Viewpoint , 2007 .

[22]  Meng Li,et al.  Non-asymptotic Analysis in Kernel Ridge Regression , 2020, ArXiv.

[23]  Marina Schmid,et al.  An Introduction To The Event Related Potential Technique , 2016 .

[24]  Brian Neelon,et al.  Bayesian Isotonic Regression and Trend Analysis , 2004, Biometrics.

[25]  A. Bhattacharya,et al.  Adaptive Bayesian inference in the Gaussian sequence model using exponential-variance priors , 2015 .

[26]  Audris Mockus,et al.  A nonparametric Bayes method for isotonic regression , 1995 .

[27]  Yongdai Kim,et al.  A Bernstein–von Mises theorem in the nonparametric right-censoring model , 2004, math/0410083.

[28]  de R René Jonge,et al.  Semiparametric Bernstein-von Mises for the error standard deviation , 2013 .

[29]  Debdeep Pati,et al.  Modality-Constrained Density Estimation via Deformable Templates , 2021, Technometrics.

[30]  R. Nickl,et al.  On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures , 2013, 1310.2484.

[31]  Aad van der Vaart,et al.  Fundamentals of Nonparametric Bayesian Inference , 2017 .

[32]  Dan Cheng,et al.  MULTIPLE TESTING OF LOCAL MAXIMA FOR DETECTION OF PEAKS IN RANDOM FIELDS. , 2014, Annals of statistics.

[33]  Martin J. Wainwright,et al.  Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates , 2013, J. Mach. Learn. Res..

[34]  C. Abraham,et al.  Bayesian regression with B‐splines under combinations of shape constraints and smoothness properties , 2015 .

[35]  Armin Schwartzman,et al.  MULTIPLE TESTING OF LOCAL MAXIMA FOR DETECTION OF PEAKS IN 1D. , 2011, Annals of statistics.

[36]  Zejian Liu,et al.  Equivalence of Convergence Rates of Posterior Distributions and Bayes Estimators for Functions and Nonparametric Functionals , 2020, 2011.13967.

[37]  C. Holmes,et al.  Generalized monotonic regression using random change points , 2003, Statistics in medicine.

[38]  David B Dunson,et al.  A transformation approach for incorporating monotone or unimodal constraints. , 2005, Biostatistics.

[39]  A. Kovac,et al.  Smooth functions and local extreme values , 2007, Comput. Stat. Data Anal..

[40]  Subhashis Ghosal,et al.  Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression , 2014, 1411.6716.

[41]  Ronald W. Davis,et al.  Replication dynamics of the yeast genome. , 2001, Science.