The Cellulosome: A Natural Bacterial Strategy to Combat Biomass Recalcitrance

[1]  M. Himmel,et al.  The potential of cellulases and cellulosomes for cellulosic waste management. , 2007, Current opinion in biotechnology.

[2]  P. Richardson,et al.  Genome Sequence of the Cellulolytic Gliding Bacterium Cytophaga hutchinsonii , 2007, Applied and Environmental Microbiology.

[3]  V. Zverlov,et al.  Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. , 2007, FEMS microbiology letters.

[4]  David K. Johnson,et al.  Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production , 2007, Science.

[5]  D. Bolam,et al.  Understanding the Biological Rationale for the Diversity of Cellulose-directed Carbohydrate-binding Modules in Prokaryotic Enzymes* , 2006, Journal of Biological Chemistry.

[6]  Charlotte Schubert,et al.  Can biofuels finally take center stage? , 2006, Nature Biotechnology.

[7]  J. Houghton,et al.  Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda , 2006 .

[8]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[9]  M. Himmel,et al.  Computer simulation studies of microcrystalline cellulose Iβ , 2006 .

[10]  Z. Jia,et al.  Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Michael J. Shulman,et al.  Novel architecture of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum. , 2006, FEMS microbiology letters.

[12]  E. Bayer,et al.  Unconventional Mode of Attachment of the Ruminococcus flavefaciens Cellulosome to the Cell Surface , 2005, Journal of bacteriology.

[13]  Josef Kellermann,et al.  Functional subgenomics of Clostridium thermocellum cellulosomal genes: Identification of the major catalytic components in the extracellular complex and detection of three new enzymes , 2005, Proteomics.

[14]  H. Gilbert,et al.  Insights into the structural determinants of cohesin-dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. , 2005, Journal of molecular biology.

[15]  M. Inui,et al.  Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. , 2005, Microbiology.

[16]  Raphael Lamed,et al.  Regulation of Major Cellulosomal Endoglucanases of Clostridium thermocellum Differs from That of a Prominent Cellulosomal Xylanase , 2005, Journal of bacteriology.

[17]  A. Demain,et al.  Cellulase, Clostridia, and Ethanol , 2005, Microbiology and Molecular Biology Reviews.

[18]  G. Davies,et al.  Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B from Clostridium thermocellum. , 2005, Acta crystallographica. Section D, Biological crystallography.

[19]  B. Webb,et al.  Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. , 2005, Biochemistry.

[20]  Z. Jia,et al.  Purification and crystallization of a trimodular complex comprising the type II cohesin-dockerin interaction from the cellulosome of Clostridium thermocellum. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[21]  V. Zverlov,et al.  Purification and cellulosomal localization ofClostridium thermocellum mixed linkage β-glucanase LicB (1,3–1,4-β-D-glucanase) , 2005, Biotechnology Letters.

[22]  E. Bayer,et al.  Contact and cellulolysis inClostridium thermocellum via extensile surface organelles , 2005, Experientia.

[23]  M. Elliott,et al.  Expression, purification and structural characterization of the scaffoldin hydrophilic X-module from the cellulosome of Clostridium thermocellum. , 2004, Protein expression and purification.

[24]  L. Marraffini,et al.  Protein sorting to the cell wall envelope of Gram-positive bacteria. , 2004, Biochimica et biophysica acta.

[25]  A. Kosugi,et al.  Hydrophilic Domains of Scaffolding Protein CbpA Promote Glycosyl Hydrolase Activity and Localization of Cellulosomes to the Cell Surface of Clostridium cellulovorans , 2004, Journal of bacteriology.

[26]  D. Bolam,et al.  Carbohydrate-binding modules: fine-tuning polysaccharide recognition. , 2004, The Biochemical journal.

[27]  Raphael Lamed,et al.  A Novel Acetivibrio cellulolyticus Anchoring Scaffoldin That Bears Divergent Cohesins , 2004, Journal of bacteriology.

[28]  M. Inui,et al.  Regulation of Expression of Cellulosomes and Noncellulosomal (Hemi)Cellulolytic Enzymes in Clostridium cellulovorans during Growth on Different Carbon Sources , 2004, Journal of bacteriology.

[29]  Roy H. Doi,et al.  Cellulosomes: plant-cell-wall-degrading enzyme complexes , 2004, Nature Reviews Microbiology.

[30]  Raphael Lamed,et al.  ScaC, an Adaptor Protein Carrying a Novel Cohesin That Expands the Dockerin-Binding Repertoire of the Ruminococcus flavefaciens 17 Cellulosome , 2004, Journal of bacteriology.

[31]  Karen E Nelson,et al.  Strain-specific genomic regions of Ruminococcus flavefaciens FD-1 as revealed by combinatorial random-phase genome sequencing and suppressive subtractive hybridization. , 2004, Environmental microbiology.

[32]  Raphael Lamed,et al.  Architecture of the Bacteroides cellulosolvens Cellulosome: Description of a Cell Surface-Anchoring Scaffoldin and a Family 48 Cellulase , 2004, Journal of bacteriology.

[33]  M. Yokoyama,et al.  Bacterial cell surface structures involved in lucerne cell wall degradation by pure cultures of cellulolytic rumen bacteria , 1989, Applied Microbiology and Biotechnology.

[34]  V. Zverlov,et al.  Extracellular glycosyl hydrolases from clostridia. , 2004, Advances in applied microbiology.

[35]  Raphael Lamed,et al.  The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? , 2004, Biodegradation.

[36]  A. Kosugi,et al.  Yutaka Cellulosomes from Mesophilic Bacteria , 2003 .

[37]  M. Inui,et al.  Regulation of Expression of Cellulosomal Cellulase and Hemicellulase Genes in Clostridium cellulovorans , 2003, Journal of bacteriology.

[38]  F. Mayer,et al.  Structural organization of the intact bacterial cellulosome as revealed by electron microscopy , 2003, Cell biology international.

[39]  Raphael Lamed,et al.  Regulation of Expression of Scaffoldin-Related Genes in Clostridium thermocellum , 2003, Journal of bacteriology.

[40]  A. Bélaı̈ch,et al.  A Rhamnogalacturonan Lyase in the Clostridium cellulolyticum Cellulosome , 2003, Journal of bacteriology.

[41]  Raphael Lamed,et al.  The Cellulosome System of Acetivibrio cellulolyticus Includes a Novel Type of Adaptor Protein and a Cell Surface Anchoring Protein , 2003, Journal of bacteriology.

[42]  Raphael Lamed,et al.  Regulation of the Cellulosomal celS (cel48A) Gene of Clostridium thermocellum Is Growth Rate Dependent , 2003, Journal of bacteriology.

[43]  P. Soucaille,et al.  Characterization of the CipA Scaffolding Protein and In Vivo Production of a Minicellulosome in Clostridium acetobutylicum , 2003, Journal of bacteriology.

[44]  Raphael Lamed,et al.  Novel Organization and Divergent Dockerin Specificities in the Cellulosome System of Ruminococcus flavefaciens , 2003, Journal of bacteriology.

[45]  Lee R Lynd,et al.  Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. , 2003, Analytical chemistry.

[46]  E. Bayer,et al.  CelI, a Noncellulosomal Family 9 Enzyme from Clostridium thermocellum, Is a Processive Endoglucanase That Degrades Crystalline Cellulose , 2003, Journal of bacteriology.

[47]  E. Bayer,et al.  Degradation of Cellulose Substrates by Cellulosome Chimeras , 2002, The Journal of Biological Chemistry.

[48]  Philippe Soucaille,et al.  Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. , 2002, FEMS microbiology letters.

[49]  Ashit K Shah,et al.  The Fibronectin Type 3-Like Repeat from the Clostridium thermocellum Cellobiohydrolase CbhA Promotes Hydrolysis of Cellulose by Modifying Its Surface , 2002, Applied and Environmental Microbiology.

[50]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[51]  V. Zverlov,et al.  Chi18A, the Endochitinase in the Cellulosome of the Thermophilic, Cellulolytic Bacterium Clostridium thermocellum , 2002, Applied and Environmental Microbiology.

[52]  P. Alzari,et al.  Letter to the Editor: 1H, 13C, 15N NMR sequence-specific resonance assignment of a Clostridium thermocellum type II cohesin module , 2002, Journal of biomolecular NMR.

[53]  V. Zverlov,et al.  A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. , 2002, Microbiology.

[54]  G J Davies,et al.  The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. , 2001, Structure.

[55]  Karen P. Scott,et al.  EndB, a Multidomain Family 44 Cellulase from Ruminococcus flavefaciens 17, Binds to Cellulose via a Novel Cellulose-Binding Module and to Another R. flavefaciens Protein via a Dockerin Domain , 2001, Applied and Environmental Microbiology.

[56]  W. Schwarz The cellulosome and cellulose degradation by anaerobic bacteria , 2001, Applied Microbiology and Biotechnology.

[57]  George N. Bennett,et al.  Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum , 2001, Journal of bacteriology.

[58]  E. Bayer,et al.  Design and Production of Active Cellulosome Chimeras , 2001, The Journal of Biological Chemistry.

[59]  R. Doi,et al.  Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Raphael Lamed,et al.  Cellulosomal Scaffoldin-Like Proteins fromRuminococcus flavefaciens , 2001, Journal of bacteriology.

[61]  A. Koivula,et al.  Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  H. Flint,et al.  Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. , 2000, Microbiology.

[63]  B. Henrissat,et al.  Imaging the Enzymatic Digestion of Bacterial Cellulose Ribbons Reveals the Endo Character of the Cellobiohydrolase Cel6A from Humicola insolens and Its Mode of Synergy with Cellobiohydrolase Cel7A , 2000, Applied and Environmental Microbiology.

[64]  I. Kataeva,et al.  Feruloyl Esterase Activity of the Clostridium thermocellum Cellulosome Can Be Attributed to Previously Unknown Domains of XynY and XynZ , 2000, Journal of bacteriology.

[65]  B. Henrissat,et al.  Cellulosome‐like sequences in Archaeoglobus fulgidus: an enigmatic vestige of cohesin and dockerin domains , 1999, FEBS letters.

[66]  H. Gilbert,et al.  A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. , 1999, Microbiology.

[67]  H. Gilbert,et al.  Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. , 1999, The Biochemical journal.

[68]  B. Henrissat,et al.  Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. , 1999, The Biochemical journal.

[69]  H. Fierobe,et al.  Sequence Analysis of Scaffolding Protein CipC and ORFXp, a New Cohesin-Containing Protein inClostridium cellulolyticum: Comparison of Various Cohesin Domains and Subcellular Localization of ORFXp , 1999, Journal of bacteriology.

[70]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[71]  E. Bayer,et al.  Cellulosomes-structure and ultrastructure. , 1998, Journal of structural biology.

[72]  R. Haser,et al.  The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution , 1998, The EMBO journal.

[73]  K. Anderson Cationized ferritin as a stain for electron microscopic observation of bacterial ultrastructure. , 1998, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[74]  Tetsuya Kimura,et al.  Cloning and DNA Sequencing of the Genes EncodingClostridium josui Scaffolding Protein CipA and Cellulase CelD and Identification of Their Gene Products as Major Components of the Cellulosome , 1998, Journal of bacteriology.

[75]  J. Sugiyama,et al.  Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals , 1998, FEBS letters.

[76]  V. Zverlov,et al.  Multidomain Structure and Cellulosomal Localization of the Clostridium thermocellum Cellobiohydrolase CbhA , 1998 .

[77]  C. Divne,et al.  Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? , 1998, Biochemical Society transactions.

[78]  Shenmin Zhang,et al.  Roles of the Catalytic Domain and Two Cellulose Binding Domains of Thermomonospora fusca E4 in Cellulose Hydrolysis , 1998, Journal of bacteriology.

[79]  P. Gounon,et al.  Identification of a region responsible for binding to the cell wall within the S-layer protein of Clostridium thermocellum. , 1998, Microbiology.

[80]  P. Karplus,et al.  Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca , 1997, Nature Structural Biology.

[81]  Tuula T. Teeri,et al.  The roles and function of cellulose-binding domains , 1997 .

[82]  C. Tardif,et al.  The cellulolytic system of Clostridium cellulolyticum. , 1997, Journal of biotechnology.

[83]  P. Gounon,et al.  Characterization and Subcellular Localization of the Clostridium thermocellum Scaffoldin Dockerin Binding Protein SdbA , 1996 .

[84]  K. Sakka,et al.  Purification and characterization of the family J catalytic domain derived from the Clostridium thermocellum endoglucanase CelJ. , 1997, Bioscience, biotechnology, and biochemistry.

[85]  C. Tardif,et al.  The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form , 1997, Journal of bacteriology.

[86]  Raphael Lamed,et al.  Dissociation of the cellulosome of Clostridium thermocellum under nondenaturing conditions , 1996 .

[87]  T. Steitz,et al.  Crystal structure of a bacterial family‐III cellulose‐binding domain: a general mechanism for attachment to cellulose. , 1996, The EMBO journal.

[88]  K. Sakka,et al.  Cloning, DNA sequencing, and expression of the gene encoding Clostridium thermocellum cellulase CelJ, the largest catalytic component of the cellulosome , 1996, Journal of bacteriology.

[89]  P. Béguin,et al.  The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. , 1996, Critical reviews in biochemistry and molecular biology.

[90]  P Béguin,et al.  A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA , 1996, Journal of bacteriology.

[91]  R. Warren Microbial hydrolysis of polysaccharides. , 1996, Annual review of microbiology.

[92]  S. Leschine,et al.  Ultrastructural diversity of the cellulase complexes of Clostridium papyrosolvens C7 , 1995, Journal of bacteriology.

[93]  G. Hazlewood,et al.  Characterization of the subunits in an apparently homogeneous subpopulation of Clostridium thermocellum cellulosomes. , 1995, Enzyme and microbial technology.

[94]  P. Gounon,et al.  OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope , 1995, Journal of bacteriology.

[95]  M. Wilchek,et al.  Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum , 1995, Applied and environmental microbiology.

[96]  O. Schneewind,et al.  Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. , 1995, Science.

[97]  D. Kilburn,et al.  Cellulose-binding domains : classification and properties , 1995 .

[98]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[99]  E. Bayer,et al.  The cellulosome--a treasure-trove for biotechnology. , 1994, Trends in biotechnology.

[100]  S. Leschine,et al.  Multicomplex cellulase-xylanase system of Clostridium papyrosolvens C7 , 1994, Journal of bacteriology.

[101]  J. Aubert,et al.  The biological degradation of cellulose. , 1994, FEMS microbiology reviews.

[102]  L. Walker,et al.  Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects , 1993, Biotechnology and bioengineering.

[103]  A Bairoch,et al.  New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. , 1993, The Biochemical journal.

[104]  J. Zeikus,et al.  Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. , 1993, Microbiological reviews.

[105]  J. Aubert,et al.  Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface , 1993, Journal of bacteriology.

[106]  A. Demain,et al.  Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL‐protein reveals an unusual degree of internal homology , 1993, Molecular microbiology.

[107]  J. Wu,et al.  Cloning and DNA sequence of the gene coding for Clostridium thermocellum cellulase Ss (CelS), a major cellulosome component , 1993, Journal of bacteriology.

[108]  L. Ljungdahl,et al.  The cellulosome: the exocellular organelle of Clostridium. , 1993, Annual review of microbiology.

[109]  E. Bayer,et al.  Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS. , 1992, FEMS microbiology letters.

[110]  J. Aubert,et al.  Involvement of separate domains of the cellulosomal protein S1 of Clostridium thermocellum in binding to cellulose and in anchoring of catalytic subunits to the cellulosome , 1992, FEBS letters.

[111]  O. Shoseyov,et al.  Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[112]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[113]  E. Bayer,et al.  Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum , 1991, Journal of bacteriology.

[114]  E. Bayer,et al.  Efficient cellulose solubilization by a combined cellulosome-β-glucosidase system , 1991 .

[115]  E. Bayer,et al.  Cellulose degradation by thermophilic anaerobic bacteria. , 1991 .

[116]  E. Bayer,et al.  Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes , 1990, Journal of bacteriology.

[117]  O. Grépinet,et al.  Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum , 1988, Journal of bacteriology.

[118]  A. Demain,et al.  Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose , 1988 .

[119]  T. Wood Preparation of crystalline, amorphous, and dyed cellulase substrates , 1988 .

[120]  Raphael Lamed,et al.  The Cellulosome of Clostridium thermocellum , 1988 .

[121]  F. Mayer Cellulolysis: ultrastructural aspects of bacterial systems. , 1988, Electron microscopy reviews.

[122]  Raphael Lamed,et al.  Scanning electron microscopic delineation of bacterial surface topology using cationized ferritin , 1987 .

[123]  Michael P. Coughlan,et al.  Macromolecular Organization of the Cellulolytic Enzyme Complex of Clostridium thermocellum as Revealed by Electron Microscopy , 1987, Applied and environmental microbiology.

[124]  E. Bayer,et al.  Specialized cell surface structures in cellulolytic bacteria , 1987, Journal of bacteriology.

[125]  E. Bayer,et al.  Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose , 1986, Journal of bacteriology.

[126]  E Setter,et al.  Organization and distribution of the cellulosome in Clostridium thermocellum , 1985, Journal of bacteriology.

[127]  B. Henrissat,et al.  Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose , 1985, Bio/Technology.

[128]  B. Henrissat,et al.  Undirectional degradation of valonia cellulose microcrystals subjected to cellulase action , 1985 .

[129]  Raphael Lamed,et al.  Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome , 1985 .

[130]  E. Bayer,et al.  Adherence of Clostridium thermocellum to cellulose , 1983, Journal of bacteriology.

[131]  E Setter,et al.  Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum , 1983, Journal of bacteriology.

[132]  B. Henrissat,et al.  The action of 1,4‐β‐D‐glucan cellobiohydrolase on Valonia cellulose microcrystals , 1983 .

[133]  B. Henrissat,et al.  Electron microscopy study of the enzymic hydrolysis of Valonia cellulose , 1983 .

[134]  E. Bayer,et al.  Cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities , 1983 .

[135]  Arnold L. Demain,et al.  Saccharification of Complex Cellulosic Substrates by the Cellulase System from Clostridium thermocellum , 1982, Applied and environmental microbiology.

[136]  T. Wood,et al.  The cellulase of Trichoderma koningii. Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase. , 1978, The Biochemical journal.

[137]  N. E. Dweltz,et al.  Paracrystalline lattice disorder in cellulose. I. Reappraisal of the application of the two‐phase hypothesis to the analysis of powder x‐ray diffractograms of native and hydrolyzed cellulosic materials , 1973 .

[138]  E. Reese,et al.  THE BIOLOGICAL DEGRADATION OF SOLUBLE CELLULOSE DERIVATIVES AND ITS RELATIONSHIP TO THE MECHANISM OF CELLULOSE HYDROLYSIS , 1950, Journal of bacteriology.