PharmGKB summary: voriconazole pathway, pharmacokinetics

Departments of Biomedical Data Science, Bioengineering, Stanford University, Stanford, California, Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, Department of Medicine, Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai and Department of Pharmacy, The Mount Sinai Hospital, New York, New York, USA Correspondence to Teri E. Klein, PhD, Department of Biomedical Data Science, Stanford School of Medicine, Shriram Center for BioE and ChemE, 443 Via Ortega, Room 213, Stanford, CA 94305, USA Tel: + 1 650 736 0156; fax: + 1 650 725 3863; e-mail: teri.klein@stanford.edu

[1]  Julia M. Barbarino,et al.  Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C19 and Voriconazole Therapy , 2018, Clinical pharmacology and therapeutics.

[2]  Michelle Whirl-Carrillo,et al.  Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC) , 2016, Genetics in Medicine.

[3]  S. Zhai,et al.  Effect of cytochrome P450 2C19 polymorphisms on the clinical outcomes of voriconazole: a systematic review and meta-analysis , 2016, European Journal of Clinical Pharmacology.

[4]  S. Arron,et al.  Association of CYP2C19 *17/*17 Genotype With the Risk of Voriconazole-Associated Squamous Cell Carcinoma. , 2016, JAMA dermatology.

[5]  A. Vinks,et al.  Genotype-Directed Dosing Leads to Optimized Voriconazole Levels in Pediatric Patients Receiving Hematopoietic Stem Cell Transplantation. , 2016, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[6]  L. Thiberville,et al.  Impact of CYP2C19 genetic polymorphisms on voriconazole dosing and exposure in adult patients with invasive fungal infections. , 2016, International journal of antimicrobial agents.

[7]  S. Arron,et al.  Voriconazole Exposure and Risk of Cutaneous Squamous Cell Carcinoma, Aspergillus Colonization, Invasive Aspergillosis and Death in Lung Transplant Recipients , 2016, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[8]  Y. Tanigawara,et al.  Impact of cytochrome P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when coadministered with voriconazole , 2015, Journal of clinical pharmacology.

[9]  M. Andréjak,et al.  High metabolic N‐oxidation of voriconazole in a patient with refractory aspergillosis and CYP2C19*17/*17 genotype , 2015, British journal of clinical pharmacology.

[10]  N. Ledeboer,et al.  CYP2C19*17 genetic polymorphism--an uncommon cause of voriconazole treatment failure. , 2015, Diagnostic microbiology and infectious disease.

[11]  J. Bakker,et al.  Gain-of-function single nucleotide variants of the CYP2C19 gene (CYP2C19*17) can identify subtherapeutic voriconazole concentrations in critically ill patients: a case series , 2015, Intensive Care Medicine.

[12]  K. Sangkuhl,et al.  Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors , 2015, Clinical pharmacology and therapeutics.

[13]  T. Ashavaid,et al.  Correlation of CYP2C19 genotype with plasma voriconazole levels: a preliminary retrospective study in Indians , 2015, International Journal of Clinical Pharmacy.

[14]  Joo-Youn Cho,et al.  A pharmacokinetic comparison of two voriconazole formulations and the effect of CYP2C19 polymorphism on their pharmacokinetic profiles , 2015, Drug design, development and therapy.

[15]  I. Thompson,et al.  Finasteride Concentrations and Prostate Cancer Risk: Results from the Prostate Cancer Prevention Trial , 2015, PloS one.

[16]  K. Thursky,et al.  Putting CYP2C19 genotyping to the test: utility of pharmacogenomic evaluation in a voriconazole-treated haematology cohort. , 2015, The Journal of antimicrobial chemotherapy.

[17]  Ya-jing Zhai,et al.  Effects of CYP3A4 polymorphisms on the plasma concentration of voriconazole , 2015, European Journal of Clinical Microbiology & Infectious Diseases.

[18]  N. Maeda,et al.  Pharmacokinetics and Safety of Voriconazole Intravenous-to-Oral Switch Regimens in Immunocompromised Japanese Pediatric Patients , 2014, Antimicrobial Agents and Chemotherapy.

[19]  J. Xing,et al.  Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. , 2014, International journal of antimicrobial agents.

[20]  F. D. De Rosa,et al.  Voriconazole and atazanavir: a CYP2C19-dependent manageable drug-drug interaction. , 2014, Pharmacogenomics.

[21]  Y. Daali,et al.  Therapeutic drug monitoring of voriconazole: a case report of multiple drug interactions in a patient with an increased CYP2C19 activity , 2014, AIDS Research and Therapy.

[22]  M. Relling,et al.  Voriconazole plasma concentrations in immunocompromised pediatric patients vary by CYP2C19 diplotypes. , 2014, Pharmacogenomics.

[23]  Julie A. Johnson,et al.  CYP2C19 Polymorphisms and Therapeutic Drug Monitoring of Voriconazole: Are We Ready for Clinical Implementation of Pharmacogenomics? , 2014, Pharmacotherapy.

[24]  H. Yamazaki,et al.  Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. , 2014, The Journal of infectious diseases.

[25]  Ze-yan Zhong,et al.  Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR Genetic Polymorphisms on Tacrolimus Metabolism in Chinese Renal Transplant Recipients , 2014, PloS one.

[26]  S. Park,et al.  Clinical Impact of Cytochrome P450 2C19 Genotype on the Treatment of Invasive Aspergillosis under Routine Therapeutic Drug Monitoring of Voriconazole in a Korean Population , 2013, Infection & chemotherapy.

[27]  J. Mega,et al.  Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C19 Genotype and Clopidogrel Therapy: 2013 Update , 2013, Clinical pharmacology and therapeutics.

[28]  Yoko Furukawa-Hibi,et al.  Correlation of CYP2C19 Phenotype With Voriconazole Plasma Concentration in Children , 2013, Journal of pediatric hematology/oncology.

[29]  R. Danner,et al.  Pharmacokinetics of Intravenous Voriconazole in Obese Patients: Implications of CYP2C19 Homozygous Poor Metabolizer Genotype , 2013, Pharmacotherapy.

[30]  D. Fredricks,et al.  Voriconazole therapeutic drug monitoring: retrospective cohort study of the relationship to clinical outcomes and adverse events , 2013, BMC Infectious Diseases.

[31]  M. Krajinovic,et al.  Pharmacogenetics and beyond: variability of voriconazole plasma levels in a patient with primary immunodeficiency. , 2012, Pharmacogenomics.

[32]  R. Altman,et al.  PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8 , 2012, Pharmacogenetics and genomics.

[33]  S. Klein,et al.  A case report of voriconazole therapy failure in a homozygous ultrarapid CYP2C19*17/*17 patient comedicated with carbamazepine , 2012, British journal of clinical pharmacology.

[34]  R. Altman,et al.  PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19 , 2012, Pharmacogenetics and genomics.

[35]  Joo-Youn Cho,et al.  Effect of CYP2C19 Polymorphism on the Pharmacokinetics of Voriconazole After Single and Multiple Doses in Healthy Volunteers , 2012, Journal of clinical pharmacology.

[36]  C. Lass‐Flörl Triazole Antifungal Agents in Invasive Fungal Infections , 2011, Drugs.

[37]  W. Wilson,et al.  Prolonged half‐life of voriconazole in a CYP2C19 homozygous poor metabolizer receiving vincristine chemotherapy: avoiding a serious adverse drug interaction , 2011, Mycoses.

[38]  A. Soubani,et al.  Pulmonary aspergillosis: a clinical review , 2011, European Respiratory Review.

[39]  D. Booth,et al.  Voriconazole toxicity related to polymorphisms in CYP2C19 , 2011, Internal medicine journal.

[40]  D. Tregouet,et al.  Effect of cytochrome P450 2C19 genotype on voriconazole exposure in cystic fibrosis lung transplant patients , 2011, European Journal of Clinical Pharmacology.

[41]  Wei-Hua Wu,et al.  Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism , 2010, European Journal of Clinical Pharmacology.

[42]  N. Irvine,et al.  Investigation into UDP-Glucuronosyltransferase (UGT) Enzyme Kinetics of Imidazole- and Triazole-Containing Antifungal Drugs in Human Liver Microsomes and Recombinant UGT Enzymes , 2010, Drug Metabolism and Disposition.

[43]  W. Haefeli,et al.  Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. , 2009, British journal of clinical pharmacology.

[44]  Kazuaki Matsumoto,et al.  Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. , 2009, International journal of antimicrobial agents.

[45]  Wei Zhang,et al.  Lack of Effect of Ginkgo biloba on Voriconazole Pharmacokinetics in Chinese Volunteers Identified as CYP2C19 Poor and Extensive Metabolizers , 2009, The Annals of pharmacotherapy.

[46]  Honghao Zhou,et al.  The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers , 2009, European Journal of Clinical Pharmacology.

[47]  W. Haefeli,et al.  CYP2C19 Genotype Is a Major Factor Contributing to the Highly Variable Pharmacokinetics of Voriconazole , 2009, Journal of clinical pharmacology.

[48]  D. Benjamin,et al.  Role of Flavin-Containing Monooxygenase in Oxidative Metabolism of Voriconazole by Human Liver Microsomes , 2008, Drug Metabolism and Disposition.

[49]  Melissa D. Johnson,et al.  Current Options in Antifungal Pharmacotherapy , 2008, Pharmacotherapy.

[50]  Thierry Buclin,et al.  Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[51]  P. Sonneveld,et al.  Hepatotoxicity of oral and intravenous voriconazole in relation to cytochrome P450 polymorphisms. , 2007, The Journal of antimicrobial chemotherapy.

[52]  M. Shimizu,et al.  Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. , 2007, Biochemical pharmacology.

[53]  G. Mikus,et al.  Safety of Voriconazole in a Patient with CYP2C9*2/CYP2C9*2 Genotype , 2006, Antimicrobial Agents and Chemotherapy.

[54]  Gerd Mikus,et al.  Potent cytochrome P450 2C19 genotype–related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir , 2006, Clinical pharmacology and therapeutics.

[55]  M. Nakashima,et al.  Pharmacokinetics of Voriconazole and Cytochrome p450 2C19 Genetic Status , 2004, Clinical pharmacology and therapeutics.

[56]  N. Wood,et al.  The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. , 2003, Drug metabolism and disposition: the biological fate of chemicals.

[57]  D A Smith,et al.  Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. , 2003, Drug metabolism and disposition: the biological fate of chemicals.

[58]  H. Derendorf,et al.  Pharmacokinetic/Pharmacodynamic Profile of Posaconazole , 2010, Clinical pharmacokinetics.

[59]  H. Derendorf,et al.  Pharmacokinetic/Pharmacodynamic Profile of Voriconazole , 2006, Clinical pharmacokinetics.