Exploring the Emergence of RNA Nucleosides and Nucleotides on the Early Earth

Understanding how life began is one of the most fascinating problems to solve. By approaching this enigma from a chemistry perspective, the goal is to define what series of chemical reactions could lead to the synthesis of nucleotides, amino acids, lipids, and other cellular components from simple feedstocks under prebiotically plausible conditions. It is well established that evolution of life involved RNA which plays central roles in both inheritance and catalysis. In this review, we present historically important and recently published articles aimed at understanding the emergence of RNA nucleosides and nucleotides on the early Earth.

[1]  Wlodek Kofman,et al.  The Philae lander mission and science overview , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  N. Pace,et al.  The universal nature of biochemistry. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Jheeta,et al.  Prebiotic RNA Synthesis by Montmorillonite Catalysis , 2014, Life.

[4]  M. Fiore,et al.  Bringing Prebiotic Nucleosides and Nucleotides Down to Earth. , 2016, Angewandte Chemie.

[5]  Peter Decker,et al.  Bioids : X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mas spectrometry of n-butoxime trifluoroacetates on OV-225 , 1982 .

[6]  M. Levy,et al.  Concentration by Evaporation and the Prebiotic Synthesis of Cytosine , 2001, Origins of life and evolution of the biosphere.

[7]  D. A. Russell,et al.  A Light-Releasable Potentially Prebiotic Nucleotide Activating Agent , 2018, Journal of the American Chemical Society.

[8]  Jack W. Szostak,et al.  The eightfold path to non-enzymatic RNA replication , 2012 .

[9]  Seung Soo Oh,et al.  Structural Rationale for the Enhanced Catalysis of Nonenzymatic RNA Primer Extension by a Downstream Oligonucleotide , 2018, Journal of the American Chemical Society.

[10]  T. Carell,et al.  Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis , 2018, Nature Communications.

[11]  T. Owen,et al.  Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko , 2016, Science Advances.

[12]  G. F. Joyce,et al.  Protocells and RNA Self-Replication. , 2018, Cold Spring Harbor perspectives in biology.

[13]  J. Nagyvary,et al.  Prebiotic Formation of Cytidine Nucleotides , 1971, Nature.

[14]  D. Bartel,et al.  Synthesizing life , 2001, Nature.

[15]  L. Orgel,et al.  Cyanoacetylene in Prebiotic Synthesis , 1966, Science.

[16]  J. Sutherland,et al.  Prebiotic chemistry: a new modus operandi , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  J. Sutherland,et al.  Direct assembly of nucleoside precursors from two- and three-carbon units. , 2006, Angewandte Chemie.

[18]  M. Robertson,et al.  Rates of decomposition of ribose and other sugars: implications for chemical evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Price,et al.  Infrared studies of molecular configurations of DNA , 1961 .

[20]  N. Pace,et al.  The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme , 1983, Cell.

[21]  Laurent Nahon,et al.  Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs , 2016, Science.

[22]  D. Sasselov,et al.  Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8cc01499j , 2018, Chemical communications.

[23]  L. Orgel,et al.  Studies in prebiotic synthesis. IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines. , 1968, Journal of molecular biology.

[24]  L. Orgel Is Cyanoacetylene Prebiotic? , 2002, Origins of life and evolution of the biosphere.

[25]  G. Zubay Studies on the Lead-Catalyzed Synthesis of Aldopentoses , 1998, Origins of life and evolution of the biosphere.

[26]  Victor S Lelyveld,et al.  Enhanced Nonenzymatic RNA Copying with 2-Aminoimidazole Activated Nucleotides , 2017, Journal of the American Chemical Society.

[27]  P. Schreiner,et al.  Gas-phase sugar formation using hydroxymethylene as the reactive formaldehyde isomer , 2018, Nature Chemistry.

[28]  L. Orgel,et al.  Conditions for Purine Synthesis: Did Prebiotic Synthesis Occur at Low Temperatures? , 1966, Science.

[29]  Rafał Szabla,et al.  A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. , 2017, Nature chemistry.

[30]  J. Szostak,et al.  Chemoselective Multicomponent One-Pot Assembly of Purine Precursors in Water , 2010, Journal of the American Chemical Society.

[31]  F. Hanaoka,et al.  8-Hydroxyadenine (7,8-dihydro-8-oxoadenine) induces misincorporation in in vitro DNA synthesis and mutations in NIH 3T3 cells. , 1995, Nucleic acids research.

[32]  D. Sasselov,et al.  Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry , 2018, Astrobiology.

[33]  L. Orgel,et al.  Aminomalononitrile and 4-amino-5-cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. , 1965, Journal of the American Chemical Society.

[34]  S. Ley,et al.  Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry , 2018, Nature Communications.

[35]  J. Oró,et al.  Synthesis of adenine from ammonium cyanide , 1960 .

[36]  A. Schwartz,et al.  Prebiotic adenine synthesis via HCN oligomerization in ice. , 1982, Bio Systems.

[37]  S A Benner,et al.  Borate Minerals Stabilize Ribose , 2004, Science.

[38]  Peter R. Wills,et al.  Insuperable problems of the genetic code initially emerging in an RNA World , 2017, bioRxiv.

[39]  S. Islam,et al.  Prebiotic systems chemistry-Complexity overcoming clutter , 2017 .

[40]  C. Mundy,et al.  Electronic effects on the surface potential at the vapor-liquid interface of water. , 2008, Journal of the American Chemical Society.

[41]  V. Vaida,et al.  The influence of organic films at the air-aqueous boundary on atmospheric processes. , 2006, Chemical reviews.

[42]  Sabino Veintemillas-Verdaguer,et al.  Synthesis of pyrimidines and triazines in ice: implications for the prebiotic chemistry of nucleobases. , 2009, Chemistry.

[43]  L. Orgel,et al.  An Unusual Photochemical Rearrangement in the Synthesis of Adenine from Hydrogen Cyanide1 , 1966 .

[44]  L. McGown,et al.  In Situ Imidazole Activation of Ribonucleotides for Abiotic RNA Oligomerization Reactions , 2015, Origins of Life and Evolution of Biospheres.

[45]  J. Sutherland,et al.  On the Prebiotic Synthesis of Ribonucleotides: Photoanomerisation of Cytosine Nucleosides and Nucleotides Revisited , 2007, Chembiochem : a European journal of chemical biology.

[46]  A. Butlerow Bildung einer zuckerartigen Substanz durch Synthese , 1861 .

[47]  Dejan-Krešimir Bučar,et al.  Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides , 2017, Nature Communications.

[48]  E. Wagner,et al.  Chemie von a-Aminonitrilen. Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte† , 1990 .

[49]  R. Zare,et al.  Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets , 2017, Proceedings of the National Academy of Sciences.

[50]  N. Yang,et al.  Photochemistry of cytosine derivatives. 2. Photohydration of cytosine derivatives. Proton magnetic resonance study on the chemical structure and property of photohydrates. , 1978, Biochemistry.

[51]  Ronald Breslow,et al.  On the mechanism of the formose reaction , 1959 .

[52]  T. Cech,et al.  Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena , 1982, Cell.

[53]  G. F. Joyce,et al.  Selective derivatization and sequestration of ribose from a prebiotic mix. , 2004, Journal of the American Chemical Society.

[54]  C. Carter What RNA World? Why a Peptide/RNA Partnership Merits Renewed Experimental Attention , 2015, Life.

[55]  L. Orgel,et al.  Studies in prebiotic synthesis. VII , 1972, Journal of Molecular Evolution.

[56]  L. Orgel,et al.  Prebiotic Synthesis: Phosphorylation in Aqueous Solution , 1968, Science.

[57]  J. Sutherland,et al.  Prebiotic synthesis of simple sugars by photoredox systems chemistry. , 2012, Nature chemistry.

[58]  J. Ferris,et al.  Chemical evolution. 18. Synthesis of pyrimidines from guanidine and cyanoacetaldehyde. , 1974, Journal of molecular evolution.

[59]  L. Orgel,et al.  Studies in prebiotic synthesis. 3. Synthesis of pyrimidines from cyanoacetylene and cyanate. , 1968, Journal of molecular biology.

[60]  Kensei Kobayashi,et al.  Abiotic Synthesis of Guanine with High-Temperature Plasma , 2000, Origins of life and evolution of the biosphere.

[61]  L. Orgel,et al.  Studies on prebiotic synthesis. I. Aminomalononitrile and 4-amino-5-cyanoimidazole. , 1966, Journal of the American Chemical Society.

[62]  T. Mizuno,et al.  Synthesis and Utilization of Formose Sugars , 1974 .

[63]  Michael P Robertson,et al.  The origins of the RNA world. , 2012, Cold Spring Harbor perspectives in biology.

[64]  A. Okamoto,et al.  Hydroxyapatite: catalyst for a one-pot pentose formation. , 2017, Organic & biomolecular chemistry.

[65]  J. Sutherland,et al.  Potentially Prebiotic Synthesis of Pyrimidine β‐D‐Ribonucleotides by Photoanomerization/Hydrolysis of α‐D‐Cytidine‐2′‐Phosphate , 2008, Chembiochem : a European journal of chemical biology.

[66]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[67]  L. Orgel,et al.  Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. , 1970, Journal of molecular biology.

[68]  Stanley L. Miller,et al.  An efficient prebiotic synthesis of cytosine and uracil , 1995, Nature.

[69]  Timothy P. Mui,et al.  Prebiotic Synthesis of Nucleotides , 2001, Origins of life and evolution of the biosphere.

[70]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[71]  Yoshihiro Furukawa,et al.  Selective Stabilization of Ribose by Borate , 2013, Origins of Life and Evolution of Biospheres.

[72]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[73]  N. Grefenstette,et al.  Selective aqueous acetylation controls the photoanomerization of α-cytidine-5'-phosphate. , 2018, Chemical communications.

[74]  T. Carell,et al.  A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway , 2016, Science.

[75]  S. Benner,et al.  Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates , 2017, Proceedings of the National Academy of Sciences.

[76]  S. Benner,et al.  Synthesis of carbohydrates in mineral-guided prebiotic cycles. , 2011, Journal of the American Chemical Society.

[77]  A. Eschenmoser Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. , 2011, Angewandte Chemie.

[78]  S. Charnley,et al.  ALMA detection and astrobiological potential of vinyl cyanide on Titan , 2017, Science Advances.