The neurophysiological correlates of colour and brightness contrast in lateral geniculate neurons
暂无分享,去创建一个
Xing Pei | O. D. Creutzfeldt | Chao-Yi Li | S. Kastner | S. Kastner | X. Pei | O. Creutzfeldt | J. M. Crook | Chaoyi Li | O. D. Creutzfeldt | S. Kastner | Chao Yi Li | C. Li
[1] D. Jameson,et al. Theory of brightness and color contrast in human vision. , 1964, Vision research.
[2] Barry B. Lee,et al. REMOTE SURROUNDS AND THE SENSITIVITY OF PRIMATE P-CELLS , 1991 .
[3] J. Pokorny,et al. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.
[4] T. Lamb,et al. Cyclic GMP and calcium: The internal messengers of excitation and adaptation in vertebrate photoreceptors , 1990, Vision Research.
[5] G. A. Geri,et al. Psychophysical determination of intraocular light scatter as a function of wavelength , 1987, Vision Research.
[6] J. Vos. Disability Glare A State of The Art Report , 1984 .
[7] A. Valberg,et al. Simulation of responses of spectrally-opponent neurones in the macaque lateral geniculate nucleus to chromatic and achromatic light stimuli , 1987, Vision Research.
[8] D. Ts'o,et al. The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[9] Xing Pei,et al. The neurophysiological correlates of colour and brightness contrast in lateral geniculate neurons , 2004, Experimental Brain Research.
[10] Bert Sakmann,et al. Scotopic and mesopic light adaptation in the cat's retina , 1969, Pflügers Archiv.
[11] F. Campbell,et al. Optical quality of the human eye , 1966, The Journal of physiology.
[12] Walter Stiles,et al. The Effect of a Glaring Light Source on Extrafoveal Vision , 1937 .
[13] O. D. Creutzfeldt,et al. A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey , 1979, Experimental Brain Research.
[14] A. Valberg,et al. Chromatic induction: Responses of neurophysiological double opponent units? , 1983, Biological Cybernetics.
[15] Ernst Pöppel,et al. Long-range colour-generating interactions across the retina , 1986, Nature.
[16] R. Jung. Visual Perception and Neurophysiology , 1973 .
[17] O. Creutzfeldt,et al. Chromatic induction and brightness contrast: a relativistic color model. , 1990, Journal of the Optical Society of America. A, Optics and image science.
[18] B. B. Lee,et al. Neuronal representation of spectral and spatial stimulus aspects in foveal and parafoveal area 17 of the awake monkey , 2004, Experimental Brain Research.
[19] D. Baylor,et al. Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.
[20] G. Benedek,et al. Intraocular light scattering;: Theory and clinical application, , 1973 .
[21] R. Shapley,et al. Receptive Field Structure of P and M Cells in the Monkey Retina , 1991 .
[22] D. Hubel,et al. Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[23] Barry B. Lee,et al. Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.
[24] A. Chamay,et al. Sorties cortico-surrénaliennes expérimentales dans le tissu adipeux du rat au moyen d’autogreffes de capsules et de surrénales décapsulées , 1967 .
[25] A. Valberg,et al. Color induction: dependence on luminance, purity, and dominant or complementary wavelength of inducing stimuli. , 1974, Journal of the Optical Society of America.
[26] O. Creutzfeldt,et al. Darkness induction, retinex and cooperative mechanisms in vision , 2004, Experimental Brain Research.
[27] A. Valberg,et al. Colour and brightness signals of parvocellular lateral geniculate neurons , 2004, Experimental Brain Research.
[28] R. Desimone,et al. Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[29] J. Pokorny,et al. Brightness of equal-luminance lights. , 1982, Journal of the Optical Society of America.
[30] David W. Miller,et al. Glare and Contrast Sensitivity for Clinicians , 1990, Springer New York.
[31] B. B. Lee,et al. The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. , 1990, The Journal of physiology.
[32] D. Hubel,et al. Colour-generating interactions across the corpus callosum , 1983, Nature.
[33] R M BOYNTON,et al. Retinal distribution of entoptic stray light. , 1958, Journal of the Optical Society of America.
[34] Steven K. Shevell,et al. Light spread and scatter from some common adapting stimuli: Computations based on the point-source light profile , 1988, Vision Research.
[35] H. Barlow,et al. Changes in the maintained discharge with adaptation level in the cat retina , 1969, The Journal of physiology.
[36] B. B. Lee,et al. Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man. , 1987, The Journal of physiology.
[37] E. Zrenner,et al. Color coding in primate retina , 1981, Vision Research.
[38] C. R. Michael. Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. , 1978, Journal of neurophysiology.
[39] J W McClurkin,et al. Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[40] R M BOYNTON,et al. Sources of entoptic stray light. , 1958, Journal of the Optical Society of America.
[41] B. B. Lee,et al. Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation. , 1983, Journal of neurophysiology.
[42] P. Padmos,et al. Cone systems interaction in single neurons of the lateral geniculate nucleus of the macaque , 1975, Vision Research.
[43] P. Rakić,et al. Genesis of the primate neostriatum: [3H]thymidine autoradiographic analysis of the time of neuron origin in the rhesus monkey , 1979, Neuroscience.
[44] G. Baumgartner,et al. Die Neurophysiologie des simultanen Helligkeitskontrastes , 1962, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.
[45] D. Tolhurst,et al. Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.
[46] B. B. Lee,et al. An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[47] B. B. Lee,et al. Linear signal transmission from prepotentials to cells in the macaque lateral geniculate nucleus , 2004, Experimental Brain Research.
[48] D. Hubel,et al. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.
[49] L. L. Holladay. Action of a Light-Source in the Field of View in Lowering Visibility , 1927 .
[50] C. Ucke,et al. DER EINFLUSS DER BLENDQUELLENGROESSE AUF DIE PHYSIOLOGISCHE BLENDUNG BEI KLEINEN BLENDWINKELN , 1974 .
[51] J. M. Hopkins,et al. Cone connections of the horizontal cells of the rhesus monkey’s retina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[52] B. B. Lee,et al. The responses of magno- and parvocellular cells of the monkey's lateral geniculate body to moving stimuli , 1979, Experimental Brain Research.
[53] R. W. Rodieck,et al. Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.
[54] B. Boycott,et al. Horizontal Cells in the Monkey Retina: Cone connections and dendritic network , 1989, The European journal of neuroscience.
[55] J. Walraven. Spatial characteristics of chromatic induction; the segregation of lateral effects from straylight artefacts. , 1973, Vision research.
[56] A. Valberg,et al. On the Physiological Basis of Higher Colour Metrics , 1991 .
[57] H. Wässle,et al. Spatial resolution in visual system: a theoretical and experimental study on single units in the cat's lateral geniculate body. , 1973, Journal of neurophysiology.
[58] O. D. Creutzfeldt,et al. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat , 1978, Experimental Brain Research.
[59] O. Creutzfeldt,et al. The relative contribution of retinal and cortical mechanisms to simultaneous contrast , 1990, Naturwissenschaften.
[60] W. R. Bush,et al. Physical measures of stray light in excised eyes. , 1954, Journal of the Optical Society of America.
[61] J. Mollon,et al. Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis. , 1980, The Journal of physiology.
[62] E. Zrenner,et al. Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.
[63] E. Land. The retinex theory of color vision. , 1977, Scientific American.
[64] B. B. Lee,et al. The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. , 1988, The Journal of physiology.
[65] B. B. Lee,et al. Reconstruction of equidistant color space from responses of visual neurones of macaques. , 1986, Journal of the Optical Society of America. A, Optics and image science.
[66] James T. McIlwain,et al. Microelectrode Study of Synaptic Excitation and Inhibition in the Lateral Geniculate Nucleus of the Cat , 1967 .
[67] Barry B. Lee,et al. Mesopic spectral responses and the purkinje shift of macaque lateral geniculate nucleus cells , 1987, Vision Research.
[68] S. Zeki. Colour coding in the cerebral cortex: The responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition , 1983, Neuroscience.
[69] O. D. Creutzfeldt,et al. A simultaneous contrast effect of steady remote surrounds on responses of cells in macaque lateral geniculate nucleus , 2004, Experimental Brain Research.
[70] G. Ranke. Objektive Messung der Lichtzerstreuung in den Augenmedien von Tieraugen , 2004, Arbeitsphysiologie.
[71] G. Baumgartner,et al. [Neurophysiology of simultaneous brightness contrast. Reciprocal reactions of antagonistic groups of neurons of the visual system]. , 1962, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.
[72] Hiroshi Takasaki,et al. von Kries Coefficient Law Applied to Subjective Color Change Induced by Background Color , 1969 .
[73] On Neurophysiological Correlates of Simultaneous Colour and Brightness Contrast as Demonstrated in P-LGN-Cells of the Macaque , 1991 .
[74] J. Walraven. Discounting the background—the missing link in the explanation of chromatic induction , 1976, Vision Research.
[75] R. Gubisch,et al. Optical Performance of the Human Eye , 1967 .
[76] J. J. Vos,et al. Light profiles of the foveal image of a point source , 1976, Vision Research.
[77] G. Fechner. Elemente der Psychophysik , 1998 .