An enhanced electrochemical and cycling properties of novel boronic Ionic liquid based ternary gel polymer electrolytes for rechargeable Li/LiCoO2 cells

[1]  K. Karuppasamy,et al.  An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based ionic liquid gel polymer electrolytes (ILGPEs) for rechargeable lithium ion batteries , 2017, Journal of Solid State Electrochemistry.

[2]  K. Karuppasamy,et al.  Electrochemical and cycling performances of novel nonafluorobutanesulfonate (nonaflate) ionic liquid based ternary gel polymer electrolyte membranes for rechargeable lithium ion batteries , 2016 .

[3]  F. Ghamouss,et al.  Cross-Linked Polymer Electrolytes for Li-Based Batteries: From Solid to Gel Electrolytes , 2016 .

[4]  K. Karuppasamy,et al.  Ionic liquid incorporated nanocomposite polymer electrolytes for rechargeable lithium ion battery: A way to achieve improved electrochemical and interfacial properties , 2016 .

[5]  Young‐Kwon Park,et al.  Production and utilization of biochar: A review , 2016 .

[6]  T. Kyu,et al.  Effect of Plasticization on Ionic Conductivity Enhancement in Relation to Glass Transition Temperature of Crosslinked Polymer Electrolyte Membranes , 2016 .

[7]  C. Hsieh,et al.  Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries. , 2016, ACS applied materials & interfaces.

[8]  Xiangping Zhang,et al.  Recent development of ionic liquid membranes , 2016 .

[9]  Feng Wu,et al.  "Liquid-in-Solid" and "Solid-in-Liquid" Electrolytes with High Rate Capacity and Long Cycling Life for Lithium-Ion Batteries , 2016 .

[10]  Zhixing Wang,et al.  Lithium difluoro(oxalato)borate as an additive to suppress the aluminum corrosion in lithium bis(fluorosulfony)imide-based nonaqueous carbonate electrolyte , 2016, Journal of Solid State Electrochemistry.

[11]  Vitor L. Martins,et al.  Two phosphonium ionic liquids with high Li(+) transport number. , 2015, Physical chemistry chemical physics : PCCP.

[12]  Yogesh Kumar,et al.  Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions , 2015 .

[13]  F. Ding,et al.  Preparation of LAGP/P(VDF-HFP) polymer electrolytes for Li-ion batteries , 2015 .

[14]  H. Wiemhöfer,et al.  Electronic Supplementary Information Pvdf-hfp/ether-modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries , 2022 .

[15]  Shalu,et al.  Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties , 2015 .

[16]  Q. Cao,et al.  Study of the effect of a novel high-performance gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride)/polystyrene and formed using an electrospinning technique , 2015 .

[17]  Xueyan Huang,et al.  Fabrication and properties of polybutadiene rubber-interpenetrating cross-linking poly(propylene carbonate) network as gel polymer electrolytes for lithium-ion battery , 2015 .

[18]  Caiyun Wang,et al.  Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries. , 2015, Chemical communications.

[19]  Heng Zhang,et al.  Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery , 2015 .

[20]  Jian-jun Zhang,et al.  Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. , 2015, ACS applied materials & interfaces.

[21]  N. H. Zainol,et al.  Lithium ion conduction and ion–polymer interaction in PVdF-HFP based gel polymer electrolytes , 2014 .

[22]  A. Swiderska-Mocek,et al.  Compatibility of polymer electrolyte based on N-methyl-N-propylpiperidinium bis(trifluoromethanesulphonyl)imide ionic liquid with LiMn2O4 cathode in Li-ion batteries , 2014 .

[23]  Bin He,et al.  Tough Nanocomposite Ionogel-based Actuator Exhibits Robust Performance , 2014, Scientific Reports.

[24]  Jian-jun Zhang,et al.  Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries , 2014, Scientific Reports.

[25]  Mayeen Uddin Khandaker,et al.  Effect of gamma irradiation on poly(vinyledene difluoride)-lithium bis(oxalato)borate electrolyte. , 2014, Physical chemistry chemical physics : PCCP.

[26]  A. Arof,et al.  Effects of 1-butyl-3-methyl imidazolium trifluoromethanesulfonate ionic liquid in poly(ethyl methacrylate)/poly(vinylidenefluoride-co- hexafluoropropylene) blend based polymer electrolyte system , 2014 .

[27]  M. Galiński,et al.  Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid–based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries , 2014 .

[28]  Z. Florjańczyk,et al.  Lithium electrolytes based on modified imidazolium ionic liquids , 2014 .

[29]  Hadariah Bahron,et al.  Investigation on modified natural rubber gel polymer electrolytes for lithium polymer battery , 2013 .

[30]  Weili Li,et al.  PVDF-based composite microporous gel polymer electrolytes containing a novelsingle ionic conductor SiO2(Li+) , 2013 .

[31]  Lili Liu,et al.  Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries , 2013, Scientific Reports.

[32]  Joshua L. Allen,et al.  Solvate Structures and Computational/Spectroscopic Characterization of Lithium Difluoro(oxalato)borate (LiDFOB) Electrolytes , 2013 .

[33]  M. Winter,et al.  Lithium difluoro(oxalato)borate: A promising salt for lithium metal based secondary batteries? , 2013 .

[34]  Peixia Yang,et al.  Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid for lithium ion batteries , 2013 .

[35]  M. Winter,et al.  Erratum to “Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes I. Electrochemical characterization of the electrolytes”, Journal of Power Sources 192 (2009) 599-605 , 2012 .

[36]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[37]  S. Hirano,et al.  Polymerized ionic liquids with guanidinium cations as host for gel polymer electrolytes in lithium metal batteries , 2012 .

[38]  Alejandro Criado,et al.  Inside Cover: [16]Cloverphene: a Clover‐Shaped cata‐Condensed Nanographene with Sixteen Fused Benzene Rings (Angew. Chem. Int. Ed. 1/2012) , 2012 .

[39]  M. Yoshio,et al.  Utilization of (oxalato)borate-based organic electrolytes in activated carbon/graphite capacitors , 2011 .

[40]  V. Mathew,et al.  Influence of 2,6 (N-pyrazolyl)isonicotinic acid on the photovoltaic properties of a dye-sensitized solar cell fabricated using poly(vinylidene fluoride) blended with poly(ethylene oxide) polymer electrolyte , 2011 .

[41]  Bruno Scrosati,et al.  A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning , 2011 .

[42]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[43]  Martin Winter,et al.  UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids , 2010 .

[44]  C. Tomasi,et al.  Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl)imide/propylene carbonate salt system , 2010 .

[45]  S. Hashmi,et al.  Ionic liquid based sodium ion conducting gel polymer electrolytes , 2010 .

[46]  Claudio Gerbaldi,et al.  UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries , 2010 .

[47]  J. Hassoun,et al.  Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler , 2009 .

[48]  Stefano Passerini,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes , 2009 .

[49]  M. Winter,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature , 2009 .

[50]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[51]  R. Katiyar,et al.  Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation , 2008 .

[52]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[53]  M. Armand,et al.  Building better batteries , 2008, Nature.

[54]  E. Hand Budget blow to US science , 2007, Nature.

[55]  Bruno Scrosati,et al.  Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries , 2007 .

[56]  Kee Suk Nahm,et al.  Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries , 2006 .

[57]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[58]  Michel Armand,et al.  Room temperature molten salts as lithium battery electrolyte , 2004 .

[59]  Joon-Ho Shin,et al.  Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes , 2003 .

[60]  Au,et al.  Development of Low Temperature Li-Ion Electrolytes for NASA and DoD Applications , 2001 .

[61]  M. Shikano,et al.  Studies on PVdF-based gel polymer electrolytes , 2000 .

[62]  Jaephil Cho,et al.  Electrochemical Properties and Thermal Stability of Li a Ni1 − x CO x O 2 Cathode Materials , 2000 .

[63]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .