Luminescence of Gold Nanoparticles

[1]  H. Sakurai,et al.  Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. , 2005, Journal of the American Chemical Society.

[2]  Chengde Mao,et al.  DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. , 2005, Angewandte Chemie.

[3]  Paolo Colombo,et al.  Metallic colloid nanotechnology, applications in diagnosis and therapeutics. , 2005, Current pharmaceutical design.

[4]  J. Weaver,et al.  Functionalized Gold Nanoparticles Mimic Catalytic Activity of a Polysiloxane‐Synthesizing Enzyme , 2005 .

[5]  Jian Zhang,et al.  Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. , 2005, The journal of physical chemistry. B.

[6]  A. Campiglia,et al.  Fluorescence lifetime enhancement of organic chromophores attached to gold nanoparticles. , 2005, The journal of physical chemistry. B.

[7]  D. Reinhoudt,et al.  Noble metal nanoparticles deposited on self-assembled monolayers by pulsed laser deposition show coulomb blockade at room temperature. , 2005, Small.

[8]  U. Pal,et al.  Structure, stability and catalytic activity of chemically synthesized Pt, Au, and Au-Pt nanoparticles. , 2005, Journal of nanoscience and nanotechnology.

[9]  J. Storrs Hall,et al.  Nanofuture: What's Next For Nanotechnology , 2005 .

[10]  Louis Theodore,et al.  Nanotechnology : Environmental Implications and Solutions , 2005 .

[11]  T. Klar,et al.  Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. , 2005, Nano letters.

[12]  R. Murray,et al.  Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? , 2005, Journal of the American Chemical Society.

[13]  L. Theodore,et al.  Nanotechnology: Environmental Implications and Solutions: Theodore/Nano: Environmental , 2005 .

[14]  U. Simon,et al.  Gold nanoparticles: assembly and electrical properties in 1-3 dimensions. , 2005, Chemical Communications.

[15]  S. Sampath,et al.  Electrochemistry with Nanoparticles , 2005 .

[16]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[17]  S. Hotchandani,et al.  Photoinduced electron transfer between chlorophyll a and gold nanoparticles. , 2005, The journal of physical chemistry. B.

[18]  Hao Wang,et al.  Supramolecular aggregates constructed from gold nanoparticles and l-try-CD polypseudorotaxanes as captors for fullerenes. , 2005, Journal of the American Chemical Society.

[19]  Kae Sato,et al.  Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions , 2005, Nucleic acids research.

[20]  L. Prodi Luminescent chemosensors: from molecules to nanoparticles , 2005 .

[21]  G. Kästle,et al.  Alloy formation of supported gold nanoparticles at their transition from clusters to solids: does size matter? , 2005, Physical review letters.

[22]  M. Nogami,et al.  Room temperature single electron transistor with two-dimensional array of Au–SiO2 core–shell nanoparticles , 2005 .

[23]  P. Scrimin,et al.  Functional gold nanoparticles for recognition and catalysis , 2004 .

[24]  G. Ruggeri,et al.  Evidence and use of metal–chromophore interactions: luminescence dichroism of terthiophene-coated gold nanoparticles in polyethylene oriented films , 2004 .

[25]  Edward L. Wolf,et al.  Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience , 2004 .

[26]  Shaowei Chen,et al.  Fullerene-functionalized gold nanoparticles: electrochemical and spectroscopic properties. , 2004, Analytical chemistry.

[27]  S. Ghosh,et al.  Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids , 2004 .

[28]  K. G. Thomas,et al.  Investigations on Nanoparticle−Chromophore and Interchromophore Interactions in Pyrene-Capped Gold Nanoparticles , 2004 .

[29]  L. Prodi,et al.  Modulation of the photophysical properties of gold nanoparticles by accurate control of the surface coverage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[30]  Akhlesh Lakhtakia,et al.  The Handbook of Nanotechnology. Nanometer Structures: Theory, Modeling, and Simulation , 2004 .

[31]  Jian Zhang,et al.  Saccharide Sensing Using Gold and Silver Nanoparticles-A Review , 2004, Journal of Fluorescence.

[32]  H. Freund,et al.  Surface chemistry of catalysis by gold , 2004 .

[33]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[34]  M. Blanchard‐Desce,et al.  Excimer probe of the binding of alkyl disulfides to gold nanoparticles and subsequent monolayer dynamics , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[35]  John H. T. Luong,et al.  More Recent Progress in the Preparation of Au Nanostructures, Properties, and Applications , 2003 .

[36]  I. Yamazaki,et al.  Metal and size effects on structures and photophysical properties of porphyrin-modified metal nanoclusters , 2003 .

[37]  M. Fox,et al.  The influence of core size on electronic coupling in shell-core nanoparticles: gold clusters capped with pyrenoxylalkylthiolate , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[38]  K. G. Thomas,et al.  Chromophore-functionalized gold nanoparticles. , 2003, Accounts of chemical research.

[39]  G. Schmid,et al.  Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities , 2003 .

[40]  M. Aslam,et al.  Effect of chain length on the tunneling conductance of gold quantum dots at room temperature , 2003 .

[41]  M. Fox,et al.  Photophysical Behavior of Variously Sized Colloidal Gold Clusters Capped with Monolayers of an Alkylstilbenethiolate , 2003 .

[42]  K. Kontturi,et al.  Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. , 2003, Journal of the American Chemical Society.

[43]  L. Prodi,et al.  Kinetics of Place-Exchange Reactions of Thiols on Gold Nanoparticles , 2003 .

[44]  M. Fox,et al.  Energy transfer from a surface-bound arene to the gold core in ω-fluorenyl-alkane-1-thiolate monolayer-protected gold clusters , 2003 .

[45]  Andrzej Wieckowski,et al.  Catalysis and Electrocatalysis at Nanoparticle Surfaces , 2003 .

[46]  Zhi‐Xin Guo,et al.  Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker , 2003 .

[47]  A. Heilmann Polymer Films with Embedded Metal Nanoparticles , 2002 .

[48]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[49]  Y. Shon,et al.  [60]Fullerene-linked gold nanoparticles: synthesis and layer-by-layer growth on a solid surface , 2002 .

[50]  A. Katz,et al.  Synthesis and Characterization of Gold−Silica Nanoparticles Incorporating a Mercaptosilane Core-Shell Interface , 2002 .

[51]  G. Kästle,et al.  Oxidation-Resistant Gold-55 Clusters , 2002, Science.

[52]  R. Murray,et al.  Quenching of [Ru(bpy)3]2+ fluorescence by binding to Au nanoparticles , 2002 .

[53]  Surat Hotchandani,et al.  Electrochemical modulation of fluorophore emission on a nanostructured gold film. , 2002, Angewandte Chemie.

[54]  M. El-Sayed,et al.  Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster , 2002 .

[55]  V. Rotello,et al.  Radial control of recognition and redox processes with multivalent nanoparticle hosts. , 2002, Journal of the American Chemical Society.

[56]  Christopher J. Kiely,et al.  Some recent advances in nanostructure preparation from gold and silver particles: a short topical review , 2002 .

[57]  K. G. Thomas,et al.  Surface Binding Properties of Tetraoctylammonium Bromide-Capped Gold Nanoparticles , 2002 .

[58]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[59]  A. Katz,et al.  Steady-State Fluorescence-Based Investigation of the Interaction between Protected Thiols and Gold Nanoparticles , 2002 .

[60]  G. Schmid,et al.  Optical Properties of Quasi One‐Dimensional Chains of Gold Nanoparticles , 2001 .

[61]  R. Murray,et al.  Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters , 2001 .

[62]  S. Yamada,et al.  Facile Fabrication of Photoelectrochemical Assemblies Consisting of Gold Nanoparticles and a Tris(2,2‘-bipyridine)ruthenium(II)−Viologen Linked Thiol , 2001 .

[63]  R. Murray,et al.  The dynamics of electron self-exchange between nanoparticles. , 2001, Journal of the American Chemical Society.

[64]  Jian Zhang,et al.  Competitive Photochemical Reactivity in a Self-Assembled Monolayer on a Colloidal Gold Cluster , 2001 .

[65]  P. Kamat,et al.  Dye-Capped Gold Nanoclusters: Photoinduced Morphological Changes in Gold/Rhodamine 6G Nanoassemblies , 2000 .

[66]  R. Whetten,et al.  Near-Infrared Luminescence from Small Gold Nanocrystals , 2000 .

[67]  R. Murray,et al.  Monolayer-protected clusters with fluorescent dansyl ligands , 2000 .

[68]  J. F. Stoddart,et al.  Heterosupramolecular Chemistry: Recognition Initiated and Inhibited Silver Nanocrystal Aggregation by Pseudorotaxane Assembly , 2000 .

[69]  P. Kamat,et al.  Making Gold Nanoparticles Glow: Enhanced Emission from a Surface-Bound Fluoroprobe , 2000 .

[70]  M. El-Sayed,et al.  The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal , 2000 .

[71]  R. Murray,et al.  Electrochemical Quantized Capacitance Charging of Surface Ensembles of Gold Nanoparticles , 1999 .

[72]  C. Shaw Gold-Based Therapeutic Agents , 1999 .

[73]  R. Murray,et al.  Redox and fluorophore functionalization of water-soluble, Tiopronin- protected gold clusters , 1999 .

[74]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[75]  Hirokazu Miyoshi,et al.  Adsorption and Encapsulation of Fluorescent Probes in Nanoparticles , 1999 .

[76]  J. F. Stoddart,et al.  Heterosupramolecular chemistry: programmed pseudorotaxane assembly at the surface of a nanocrystal. , 1999, Angewandte Chemie.

[77]  Stephen W. Feldberg,et al.  Quantized Capacitance Charging of Monolayer-Protected Au Clusters , 1998 .

[78]  Janos H. Fendler,et al.  Nanoparticles and Nanostructured Films , 1998 .

[79]  Jess P. Wilcoxon,et al.  Photoluminescence from nanosize gold clusters , 1998 .

[80]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[81]  Bruno M. Humbel,et al.  Preparation of Functional Silane-Stabilized Gold Colloids in the (Sub)nanometer Size Range , 1997 .

[82]  W. Hofstetter,et al.  Single-Electron Box and the Helicity Modulus of an Inverse Square XY Model , 1996, cond-mat/9612180.

[83]  S. Lundqvist,et al.  Photoluminescence of noble metals , 1988 .

[84]  Shen,et al.  Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. , 1986, Physical review. B, Condensed matter.

[85]  G. Higby,et al.  Gold in medicine , 1982, Gold bulletin.

[86]  A. Nitzan,et al.  Spectroscopic properties of molecules interacting with small dielectric particles , 1981 .

[87]  A. Mooradian,et al.  Photoluminescence of Metals , 1969 .

[88]  Ivar Giaever,et al.  Superconductivity of small tin particles measured by tunneling , 1968 .

[89]  R. Kubo Electronic Properties of Metallic Fine Particles. I. , 1962 .

[90]  D. Fiorani Surface Effects in Magnetic Nanoparticles , 2005 .

[91]  Nan Yao,et al.  Handbook of microscopy for nanotechnology , 2005 .

[92]  F. Faupel,et al.  Size evolution effect of the reduction rate on the synthesis of gold nanoparticles , 2005 .

[93]  G. Ali Mansoori,et al.  Principles of nanotechnology , 2005 .

[94]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[95]  L. Prodi,et al.  Self-assembly of monolayer-coated silver nanoparticles on gold electrodes. An electrochemical investigation , 2003 .

[96]  Prashant V. Kamat,et al.  Photoinduced Charge Separation in a Fluorophore−Gold Nanoassembly , 2002 .

[97]  P. Kamat,et al.  Fullerene-Functionalized Gold Nanoparticles. A Self-Assembled Photoactive Antenna-Metal Nanocore Assembly , 2002 .

[98]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[99]  D. H. Brown,et al.  The chemistry of the gold drugs used in the treatment of rheumatoid arthritis , 1980 .

[100]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[101]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[102]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.