Bioinformatics Methods and Protocols

Part 1. Sequence Analysis Packages GCG: The Wisconsin Package of Sequence Analysis Programs David D. Womble Web-Based Interfaces for the GCG Sequence Analysis Programs David D. Womble Omiga: A PC-Based Sequence Analysis Tool Jeffrey A. Kramer MacVector: Integrated Sequence Analysis for the Macintosh Promila A. Rastogi DNASTAR's Lasergene Sequence Analysis Software Timothy G. Burland PepTool(TM) and GeneTool(TM): Platform-Independent Tools for Biological Sequence Analysis David S. Wishart, Paul Stothard, and Gary H. Van Domselaar The Staden Package, 1998 Rodger Staden, Kathryn F. Beal, and James K. Bonfield Building a Multiuser Sequence Analysis Facility Using Freeware Brian Fristensky Part 2. Molecular Biology Software Free Software in Molecular Biology for Macintosh and MS Windows Computers Appendix: Software Listings Don Gilbert Flexible Sequence Similarity Searching with the FASTA3 Program Package William R. Pearson The Use of CLUSTAL W and CLUSTAL X for Multiple Sequence Alignment Ashok Aiyar Phylogenetic Analysis Using PHYLIP Jacques D. Retief Annotating Sequence Data Using Genotator Nomi L. Harris Low Cost Gel Analysis Jeffry A. Reidler Part 3. Web-Based Resources Computer Resources for the Clinical and Molecular Geneticist Yuval Yaron and Avi Orr-Urtreger The NCBI: Publicly Available Tools and Resources on the Web Jack P. Jenuth Resources at EBI Patricia Rodriguez-Tome Computer-Assisted Analysis of Transcription Control Regions: MatInspector and Other Programs Thomas Werner Computational Approaches for Gene Identification Gautam B. Singh Primer3 on the WWW for General Users and for Biologist Programmers Steve Rozen andHelen Skaletsky Using the WWW to Supply the Molecular Biology Lab MaryAnn Labant and Roger Anderson Part 4. Computers and Molecular Biology: Issues and Constraints Network Computing: Restructuring How Scientists Use Computers and What We Get Out of Them Brian Fristensky Computing with DNA Lila Kari and Laura F. Landweber Detecting Biological Patterns: The Integration of Databases, Models, and Algorithms Gautam B. Singh Part 5. Teaching Bioinformatics and Keeping Up-to-Date with the Literature Design and Implementation of an Introductory Course for Computer Applications in Molecular Biology and Genetics Stephen A. Krawetz The Virtual Library I: Searching MEDLINE Keir Reavie The Virtual Library II: Science Citation Index and Current Awareness Services Keir Reavie The Virtual Library III: Electronic Journals, Grants, and Funding Information Keir Reavie

[1]  D. Lipman,et al.  Rapid similarity searches of nucleic acid and protein data banks. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Kun-Mao Chao,et al.  Aligning two sequences within a specified diagonal band , 1992, Comput. Appl. Biosci..

[3]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Takashi Yokomori,et al.  DNA implementation of simple Horn clause computation , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[5]  W R Pearson,et al.  Comparison of DNA sequences with protein sequences. , 1997, Genomics.

[6]  W. Pearson Effective protein sequence comparison. , 1996, Methods in enzymology.

[7]  Richard J. Lipton,et al.  Speeding up computations via molecular biology , 1995, DNA Based Computers.

[8]  A. Bairoch PROSITE: a dictionary of sites and patterns in proteins. , 1991, Nucleic acids research.

[9]  Gheorghe Paun,et al.  DNA COMPUTING BASED ON THE SPLICING OPERATION , 1996 .

[10]  M. Waterman,et al.  A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. , 1987, Journal of molecular biology.

[11]  Gheorghe Paun,et al.  On the power of the splicing operation , 1995, Int. J. Comput. Math..

[12]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[13]  Lila Kari,et al.  Contextual Insertions/Deletions and Computability , 1996, Inf. Comput..

[14]  W. C. Barker,et al.  The PIR-International Protein Sequence Database. , 1998, Nucleic acids research.

[15]  Lours,et al.  An Extreme Value Theory for Sequence Matching , 2022 .

[16]  Eugene W. Myers,et al.  Optimal alignments in linear space , 1988, Comput. Appl. Biosci..

[17]  Satoshi Kobayashi,et al.  DNA-EC: A model of DNA-computing based on equality checking , 1997, DNA Based Computers.

[18]  Leonard M. Adleman,et al.  On constructing a molecular computer , 1995, DNA Based Computers.

[19]  Erik Winfree,et al.  On the computational power of DNA annealing and ligation , 1995, DNA Based Computers.

[20]  Donald Beaver Computing with DNA , 1995, J. Comput. Biol..

[21]  S. Altschul Amino acid substitution matrices from an information theoretic perspective , 1991, Journal of Molecular Biology.

[22]  Warren D. Smith DNA computers in vitro and vivo , 1995, DNA Based Computers.

[23]  D. Lipman,et al.  Rapid and sensitive protein similarity searches. , 1985, Science.

[24]  W. Miller,et al.  A time-efficient, linear-space local similarity algorithm , 1991 .

[25]  William R. Pearson,et al.  Identifying distantly related protein sequences. , 1997, Computer applications in the biosciences : CABIOS.

[26]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T K Attwood,et al.  OWL--a non-redundant composite protein sequence database. , 1994, Nucleic acids research.

[28]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[29]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[30]  W. Pearson Comparison of methods for searching protein sequence databases , 1995, Protein science : a publication of the Protein Society.

[31]  W. Pearson Empirical statistical estimates for sequence similarity searches. , 1998, Journal of molecular biology.

[32]  Paul W. K. Rothemund,et al.  A DNA and restriction enzyme implementation of Turing machines , 1995, DNA Based Computers.

[33]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[34]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[35]  John C. Wootton,et al.  Statistics of Local Complexity in Amino Acid Sequences and Sequence Databases , 1993, Comput. Chem..

[36]  S. Altschul,et al.  Issues in searching molecular sequence databases , 1994, Nature Genetics.

[37]  Martyn Amos,et al.  Error-resistant implementation of DNA computations , 1996, DNA Based Computers.

[38]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[39]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[40]  Donald Beaver,et al.  A universal molecular computer , 1995, DNA Based Computers.