Teleportation via generalized measurements, and conclusive teleportation

In this work we show that teleportation is a special case of a generalized Einstein, Podolsky, Rosen (EPR) non-locality. Based on the connection between teleportation and generalized measurements we define conclusive teleportation. We show that perfect conclusive teleportation can be obtained with any pure entangled state, and it can be arbitrarily approached with a particular mixed state.

[1]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[2]  E. Rains Quantum Codes of Minimum Distance Two , 1997, IEEE Trans. Inf. Theory.

[3]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[4]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[5]  H. Kimble,et al.  A posteriori teleportation , 1998, Nature.

[6]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[7]  S. Massar,et al.  Purifying Noisy Entanglement Requires Collective Measurements , 1998, quant-ph/9805001.

[8]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[9]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[10]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[11]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[12]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[13]  3 2 J ul 1 99 6 Quantum Error Correction and Orthogonal Geometry , 2008 .

[14]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[15]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[16]  Biham,et al.  Quantum cryptographic network based on quantum memories. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[17]  N. Gisin Nonlocality criteria for quantum teleportation , 1996 .

[18]  N. Gisin Hidden quantum nonlocality revealed by local filters , 1996 .

[19]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  P. Shor,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[22]  Ekert,et al.  Eavesdropping on quantum-cryptographical systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[24]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[25]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[26]  Mann,et al.  Maximal violation of Bell inequalities for mixed states. , 1992, Physical review letters.

[27]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[28]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[29]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[30]  I. D. Ivanović How to differentiate between non-orthogonal states , 1987 .

[31]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  E. B. Davies,et al.  Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.

[33]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[34]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[35]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[36]  John T. Lewis,et al.  An operational approach to quantum probability , 1970 .

[37]  Carl W. Helstrom,et al.  Detection Theory and Quantum Mechanics (II) , 1967, Inf. Control..

[38]  Carl W. Helstrom,et al.  Detection Theory and Quantum Mechanics , 1967, Inf. Control..

[39]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .