Virtual Differential Passivity based Control for Tracking of Flexible-joints Robots

Based on recent advances in contraction methods in systems and control, in this paper we present the virtual differential passivity based control (v-dPBC) technique. This is a constructive design method that combines the concept of virtual systems and of differential passivity. We apply the method to the tracking control problem of flexible joints robots (FJRs) which are formulated in the port-Hamiltonian (pH) framework. Simulations on a single flexible joint link are presented for showing the performance of a controller obtained with this approach.

[1]  Antonio Loría,et al.  Global position-feedback tracking control of flexible-joint robots , 2016, 2016 American Control Conference (ACC).

[2]  M. Spong Modeling and Control of Elastic Joint Robots , 1987 .

[3]  M. Spong,et al.  Adaptive control of flexible joint manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[4]  R. A. Al-Ashoor,et al.  Adaptive control of flexible joint manipulators , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[5]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[6]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[7]  Qi Zhang,et al.  Interconnection and damping assignment passivity-based control for flexible joint robot , 2014, Proceeding of the 11th World Congress on Intelligent Control and Automation.

[8]  Lyubomir Gruyitch,et al.  On tracking control , 2013 .

[9]  Nathan van de Wouw,et al.  Convergent systems vs. incremental stability , 2013, Syst. Control. Lett..

[10]  Romeo Ortega,et al.  An observer-based set-point controller for robot manipulators with flexible joints , 1993 .

[11]  Suguru Arimoto,et al.  Stability and robustness of PID feedback control for robot manipulators of sensory capability , 1984 .

[12]  Rogelio Lozano,et al.  Global tracking controllers for flexible-joint manipulators: a comparative study , 1995, Autom..

[13]  J. Scherpen,et al.  Model reduction of a flexible-joint robot: a port-Hamiltonian approach , 2016 .

[14]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[15]  Eduardo Sontag Contractive Systems with Inputs , 2010 .

[16]  R. Ortega,et al.  On Tracking Control of Rigid and Flexible Joint Robots , 1995 .

[17]  Patrizio Tomei,et al.  A tracking controller for flexible joint robots using only link position feedback , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[18]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[19]  Patrizio Tomei,et al.  A tracking controller for flexible joint robots using only link position feedback , 1995, IEEE Trans. Autom. Control..

[20]  Romeo Ortega,et al.  New results on Control by Interconnection and Energy-Balancing Passivity-Based Control of port-hamiltonian systems , 2014, 53rd IEEE Conference on Decision and Control.

[21]  Thor I. Fossen,et al.  A Tutorial on Incremental Stability Analysis using Contraction Theory , 2010 .

[22]  Bayu Jayawardhana,et al.  Tracking Control of Fully-actuated port-Hamiltonian Mechanical Systems via Sliding Manifolds and Contraction Analysis , 2017 .

[23]  Suguru Arimoto Control Theory of Nonlinear Mechanical Systems , 1996 .

[24]  Arjan van der Schaft,et al.  On Differential Passivity , 2013, NOLCOS.

[25]  Arjan van der Schaft,et al.  Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems , 2008, IEEE Transactions on Automatic Control.

[26]  Nathan van de Wouw,et al.  Convergent Systems: Nonlinear Simplicity , 2017 .

[27]  Alessandro Astolfi,et al.  Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[28]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[29]  Diana Bohm,et al.  L2 Gain And Passivity Techniques In Nonlinear Control , 2016 .

[30]  A. Schaft,et al.  Variational and Hamiltonian Control Systems , 1987 .

[31]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[32]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[33]  Arjan van der Schaft,et al.  On differential passivity of physical systems , 2013, 52nd IEEE Conference on Decision and Control.