Python for Scientists

Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.

[1]  Jan S. Hesthaven,et al.  Spectral penalty methods , 2000 .

[2]  A. Bellen,et al.  Numerical methods for delay differential equations , 2003 .

[3]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[4]  Guido van Rossum,et al.  An Introduction to Python , 2003 .

[5]  D. Gottlieb,et al.  A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations , 1988 .

[6]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[7]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[8]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[9]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[10]  Colin Sparrow,et al.  The Lorenz equations , 1982 .

[11]  B. Øksendal Stochastic Differential Equations , 1985 .

[12]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[13]  Hans Petter Langtangen,et al.  Python scripting for computational science , 2004 .

[14]  Mark Lutz,et al.  Learning Python , 1999 .

[15]  Stephen Wilson,et al.  The Beauty of Fractals: Images of Complex Dynamical Systems by Heinz Otto Peitgen, Peter Richter (review) , 2017 .

[16]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[17]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[18]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[19]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[20]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[21]  Sandro Tosi,et al.  Matplotlib for Python Developers , 2009 .

[22]  McKinney Wes,et al.  Python for Data Analysis , 2012 .

[23]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[24]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[25]  Philipp K. Janert,et al.  Gnuplot in Action , 2015 .

[26]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[27]  U. Ascher,et al.  A New Basis Implementation for a Mixed Order Boundary Value ODE Solver , 1987 .

[28]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[29]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[30]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[31]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[32]  Hans Petter Langtangen,et al.  A Primer on Scientific Programming with Python , 2009 .

[33]  J. Hull Options, Futures, and Other Derivatives , 1989 .