MCLUST: Software for Model-Based Clustering, Density Estimation and Discriminant Analysis

Abstract : MCLUST is a software package for model-based clustering, density estimation and discriminant analysis interfaced to the S-PLUS commercial software. It implements parameterized Gaussian hierarchical clustering algorithms and the EM algorithm for parameterized Gaussian mixture models with the possible addition of a Poisson noise term. Also included are functions that combine hierarchical clustering, EM and the Bayesian Information Criterion (BIC) in comprehensive strategies for clustering, density estimation, and discriminant analysis. MCLUST provides functionality for displaying and visualizing clustering and classification results. A web page with related links can be found at http;//www.stat.washington.edu/mclust.

[1]  Gérard Govaert,et al.  Gaussian parsimonious clustering models , 1995, Pattern Recognit..

[2]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[3]  A. Raftery,et al.  Nearest-Neighbor Clutter Removal for Estimating Features in Spatial Point Processes , 1998 .

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[6]  C. Fraley,et al.  Nonparametric Maximum Likelihood Estimation of Features in Spatial Point Processes Using Voronoï Tessellation , 1997 .

[7]  A. Raftery,et al.  Detecting features in spatial point processes with clutter via model-based clustering , 1998 .

[8]  Adrian E. Raftery,et al.  Model-based methods for textile fault detection , 1999, Int. J. Imaging Syst. Technol..

[9]  Adrian E. Raftery,et al.  Fitting straight lines to point patterns , 1984, Pattern Recognit..

[10]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[11]  A. Scott,et al.  Clustering methods based on likelihood ratio criteria. , 1971 .

[12]  L. Wasserman,et al.  Practical Bayesian Density Estimation Using Mixtures of Normals , 1997 .

[13]  Chris Fraley,et al.  Algorithms for Model-Based Gaussian Hierarchical Clustering , 1998, SIAM J. Sci. Comput..

[14]  Adrian E. Raftery,et al.  Linear flaw detection in woven textiles using model-based clustering , 1997, Pattern Recognit. Lett..

[15]  Stephen P. Kaluzny,et al.  S+SpatialStats: User’s Manual for Windows® and UNIX® , 1998 .

[16]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[17]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[18]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[19]  Adrian E. Raftery,et al.  MCLUST: Software for Model-Based Cluster Analysis , 1999 .

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  Adrian E. Raftery,et al.  Model‐based methods for textile fault detection , 1999 .

[22]  H. P. Friedman,et al.  On Some Invariant Criteria for Grouping Data , 1967 .