Comparison of p-type a-Si:C:H/ZnO:Al and µc- Si:C:H/ZnO:Al Thin-film Solar Cell Structures - A Hard X-ray Photoelectron Spectroscopy Study

The chemical and electronic properties of aSi:C:H(B)/ZnO:Al and μc-Si:C:H(B)/ZnO:Al thin-film solar cell structures are studied by hard x-ray photoelectron spectroscopy (HAXPES). Using a combination of different x-ray excitation energies and deliberate sample design, we were able to select the probed volume, i.e. the silicon capping layer only or the silicon and zinc oxide layer (including the buried interface). For the aSi:C:H(B) material, we find a higher deposition rate and a smaller value for the modified Auger parameter than for μcSi:C:H(B). In addition, we find indications of a pronounced band bending limited to the very surface of the a-Si:C:H(B) and the μcSi:C:H(B) layers, which is more distinct in the latter case.

[1]  G. Moretti Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review , 1998 .

[2]  H. Okamoto,et al.  Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells , 1982 .

[3]  B. Rech,et al.  Hard x-ray photoelectron spectroscopy study of the buried Si/ZnO thin-film solar cell interface: Direct evidence for the formation of Si–O at the expense of Zn-O bonds , 2011 .

[4]  G-R. Yang,et al.  Comparison of low-temperature oxidation of crystalline Si and B with a-Si:B alloy: An x-ray photoelectron spectroscopy study , 1997 .

[5]  F. Schäfers,et al.  The high kinetic energy photoelectron spectroscopy facility at BESSY progress and first results , 2009 .

[6]  Johannes Meier,et al.  High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI TM-M R&D Reactor , 2009 .

[7]  T. Eickhoff Photoemissionsuntersuchungen an vergrabenen Grenzschichten SiO2/Si, SiO2/SiC und Thiolen auf Gold mit 3,0-5,5 keV Röntgenstrahlung , 2002 .

[8]  Bernd Rech,et al.  Transparent Conductive Zinc Oxide , 2008 .

[9]  Y. Matsushita,et al.  Present Status of the NIMS Contract Beamline BL15XU at SPring‐8 , 2010 .

[10]  Bernd Rech,et al.  The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells , 2007 .

[11]  M. Gorgoi,et al.  KMC-1: a high resolution and high flux soft x-ray beamline at BESSY. , 2007, The Review of scientific instruments.

[12]  L. Johansson,et al.  Studies of oxidized hexagonal SiC surfaces and the SiC/SiO2 interface using photoemission and synchrotron radiation , 2004 .

[13]  J. Müller,et al.  Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates , 2001 .

[14]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths , 2005 .

[15]  Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface , 2010 .

[16]  C. Beneking,et al.  Solution of the ZnO/p contact problem in a-Si:H solar cells , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[17]  A. Szekeres,et al.  Oxidation of amorphous and crystalline silicon , 1995 .

[18]  Bernd Rech,et al.  Transparent conductive zinc oxide : basics and applications in thin film solar cells , 2008 .