Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions

The “t-model” for dimensional reduction is applied to the estimation of the rate of decay of solutions of the Burgers equation and of the Euler equations in two and three space dimensions. The model was first derived in a statistical mechanics context, but here we analyze it purely as a numerical tool and prove its convergence. In the Burgers case, the model captures the rate of decay exactly, as was previously shown. For the Euler equations in two space dimensions, the model preserves energy as it should. In three dimensions, we find a power law decay in time and observe a temporal intermittency.

[1]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P. Hartman Ordinary Differential Equations , 1965 .

[3]  Ugo Piomelli,et al.  Large-eddy simulation: achievements and challenges , 1999 .

[4]  Peter S. Bernard,et al.  Turbulent Flow: Analysis, Measurement and Prediction , 2002 .

[5]  David Bernstein,et al.  Optimal Prediction of Burgers's Equation , 2007, Multiscale Model. Simul..

[6]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[7]  M. Synek,et al.  ACCURATE ANALYTICAL SELF-CONSISTENT-FIELD WAVE FUNCTIONS FOR Nd$sup 3$ . , 1970 .

[8]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[9]  K. Squires,et al.  Prediction of turbulent separation over a backward-facing smooth ramp , 2005 .

[10]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[11]  Peter S. Bernard,et al.  The energy decay in self-preserving isotropic turbulence revisited , 1991, Journal of Fluid Mechanics.

[12]  Alexandre J. Chorin,et al.  Vorticity and turbulence , 1994 .

[13]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[14]  F. Toschi,et al.  Acceleration and vortex filaments in turbulence , 2005, nlin/0501041.

[15]  Leslie M. Smith,et al.  Renormalization group analysis of turbulence , 2003 .

[16]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[17]  Charles Meneveau,et al.  Fractal model for coarse-grained nonlinear partial differential equations , 1997 .

[18]  H. K. Moffatt,et al.  Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics , 1994, Journal of Fluid Mechanics.

[19]  R. Moser,et al.  Optimal LES formulations for isotropic turbulence , 1999, Journal of Fluid Mechanics.

[20]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[21]  T. Tatsumi Theory of Homogeneous Turbulence , 1980 .

[22]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .