Intrinsic Simulations between Stochastic Cellular Automata

The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a simulation between two stochastic cellular automata, even though the intrinsic simulation relation is shown to be undecidable in dimension two and higher. The key result behind this is the caracterization of equality of stochastic global maps by the existence of a coupling between the random sources. We then prove that there is a universal non-deterministic cellular automaton, but no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality.

[1]  Eric Thierry,et al.  Applying Causality Principles to the Axiomatization of Probabilistic Cellular Automata , 2011, CiE.

[2]  Nicolas Ollinger Universalities in cellular automata a (short) survey , 2008, JAC.

[3]  Nazim Fatès Stochastic Cellular Automata Solve the Density Classification Problem with an Arbitrary Precision , 2011, STACS.

[4]  Ana Busic,et al.  Probabilistic Cellular Automata, Invariant Measures, and Perfect Sampling , 2010, Advances in Applied Probability.

[5]  Nicolas Ollinger,et al.  Bulking II: Classifications of cellular automata , 2010, Theor. Comput. Sci..

[6]  Damien Regnault,et al.  Progresses in the Analysis of Stochastic 2D Cellular Automata: A Study of Asynchronous 2D Minority , 2007, MFCS.

[7]  Petr Kůrka,et al.  Topological and symbolic dynamics , 2003 .

[8]  Nicolas Ollinger,et al.  Bulking I: An abstract theory of bulking , 2011, Theor. Comput. Sci..

[9]  Hendrik Broer,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[10]  A. Toom,et al.  Chapter 4 CELLULAR AUTOMATA WITH ERRORS: PROBLEMS for STUDENTS of PROBABILITY , 2005 .

[11]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[12]  Nicolas Ollinger,et al.  Four states are enough! , 2011, Theor. Comput. Sci..

[13]  Pablo Arrighi,et al.  Intrinsically universal n-dimensional quantum cellular automata , 2009, J. Comput. Syst. Sci..

[14]  Marcus Pivato,et al.  The ergodic theory of cellular automata , 2012, Int. J. Gen. Syst..

[15]  Nazim Fatès,et al.  Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2006, LATIN.

[16]  Péter Gács Reliable Cellular Automata with Self-Organization , 1997, FOCS 1997.

[17]  Masayuki Kimura,et al.  Condition for Injectivity of Global Maps for Tessellation Automata , 1976, Inf. Control..

[18]  Nicolas Ollinger Automates cellulaires : structures , 2002 .

[19]  Guillaume Theyssier Automates cellulaires : un modèle de complexités , 2005 .

[20]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[21]  Nicolas Ollinger,et al.  The Quest for Small Universal Cellular Automata , 2002, ICALP.

[22]  Ivan Rapaport,et al.  Inducing an Order on Cellular Automata by a Grouping Operation , 1998, Discret. Appl. Math..