Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers

Indirect evidence is presented that free‐standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography. The novel approach uses electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers. Mesoporous Si layers of high porosity exhibit visible (red) photoluminescence at room temperature, observable with the naked eye under <1 mW unfocused (<0.1 W cm−2) green or blue laser line excitation. This is attributed to dramatic two‐dimensional quantum size effects which can produce emission far above the band gap of bulk crystalline Si.

[1]  A. Uhlir Electrolytic shaping of germanium and silicon , 1956 .

[2]  J. R. Haynes,et al.  Radiation Resulting from Recombination of Holes and Electrons in Silicon , 1956 .

[3]  S. M. Hu,et al.  Observation of Etching of n‐Type Silicon in Aqueous HF Solutions , 1967 .

[4]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[5]  W. Michaelis,et al.  Radiative Recombination in Silicon p‐n Junctions , 1969 .

[6]  H. Schlangenotto,et al.  Temperature dependence of the radiative recombination coefficient in silicon , 1974 .

[7]  Jeffrey A. Reimer,et al.  Efficient visible luminescence from hydrogenated amorphous silicon , 1983 .

[8]  Amorphous Silicon Produced by Ion Implantation Etching Rate in Solution and Effect of Annealing , 1984 .

[9]  K. Barla,et al.  Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction , 1984 .

[10]  C. Pickering,et al.  Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon , 1984 .

[11]  I. M. Young,et al.  X‐ray double crystal diffraction study of porous silicon , 1985 .

[12]  Michael J. Uren,et al.  An experimental and theoretical study of the formation and microstructure of porous silicon , 1985 .

[13]  L. Earwaker,et al.  Analysis of porous silicon , 1985 .

[14]  L. Canham Room temperature photoluminescence from etched silicon surfaces: The effects of chemical pretreatments and gaseous ambients , 1986 .

[15]  Chang,et al.  Unusually low surface-recombination velocity on silicon and germanium surfaces. , 1986, Physical review letters.

[16]  L. Canham,et al.  1.3‐μm light‐emitting diode from silicon electron irradiated at its damage threshold , 1987 .

[17]  George,et al.  Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces. , 1988, Physical review. B, Condensed matter.

[18]  Furukawa,et al.  Quantum size effects on the optical band gap of microcrystalline Si:H. , 1988, Physical review. B, Condensed matter.

[19]  A. Halimaoui,et al.  Porous silicon: the material and its application to SOI technologies , 1988 .

[20]  M. Hove,et al.  The Structure of Surfaces II , 1988 .

[21]  R. L. Smith,et al.  A theoretical model of the formation morphologies of porous silicon , 1988 .

[22]  S. D. Collins,et al.  Preferential propagation of pores during the formation of porous silicon: A transmission electron microscopy study , 1989 .

[23]  G. S. Higashi,et al.  Infrared spectroscopy of Si(111) and Si(100) surfaces after HF treatment: Hydrogen termination and surface morphology , 1989 .

[24]  L. Canham,et al.  A study of carbon-implanted silicon for light-emitting diode fabrication , 1989 .