Triply periodic level surfaces as models for cubic tricontinuous block copolymer morphologies

The domains of microphase separated block copolymers develop interfacial surfaces of approximately constant mean curvature in response to thermodynamic driving forces. Of particular recent interest are the tricontinuous triply periodic morphologies and their mathematical representations. Level surfaces are represented by certain real functions which satisfy the expression F(x,y,z) = t, where t is a constant. In general, they are non-self-intersecting and smooth, except at special values of the parameter t. We construct periodic level surfaces according to the allowed reflections of a particular cubic space group; such triply periodic surfaces maintain the symmetries of the chosen space group and make attractive approximations to certain recently computed triply periodic surfaces of constant mean curvature. This paper is a study of the accuracy of the approximations constructed using the lowest Fourier term of the Pm3m, Fd3m and I4132 space groups, and the usefulness of these approximations in analysing experimentally observed tricontinuous block copolymer morphologies at a variety of volume fractions. We numerically compare surface area per unit volume of particular level surfaces with constant mean curvature surfaces having the same volume fraction. We also demonstrate the utility of level surfaces in simulating projections of tricontinuous microdomain morphologies for comparison with actual transmission electron micrographs and determination of block copolymer microstructure.

[1]  J. Sadoc Geometry in Condensed Matter Physics , 1990 .

[2]  S. Forsén,et al.  The Cubic Phase of Monoglyceride-Water Systems. Arguments for a Structure Based upon Lamellar Bilayer Units , 1979 .

[3]  W. Fischer,et al.  Genera of minimal balance surfaces , 1989 .

[4]  E. Thomas,et al.  Architecturally-Induced Tricontinuous Cubic Morphology in Compositionally Symmetric Miktoarm Starblock Copolymers , 1996 .

[5]  Bates,et al.  Epitaxial relationship for hexagonal-to-cubic phase transition in a block copolymer mixture. , 1994, Physical review letters.

[6]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[7]  Donald M. Anderson,et al.  Microdomain Morphology of Star Copolymers in the Strong-Segregation Limit , 1988 .

[8]  E. Eikenberry,et al.  Nonbilayer phases of membrane lipids. , 1991, Chemistry and physics of lipids.

[9]  Edwin L. Thomas,et al.  Phase morphology in block copolymer systems , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  E. Thomas,et al.  Lamellar Diblock Copolymer Grain Boundary Morphology. 4. Tilt Boundaries , 1994 .

[11]  Hirokazu Hasegawa,et al.  Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure of polystyrene-polyisoprene diblock polymers , 1987 .

[12]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[13]  L. Scriven,et al.  Equilibrium bicontinuous structure , 1976, Nature.

[14]  E. Thomas,et al.  Effect of morphology on the transport of gases in block copolymers , 1987 .

[15]  Algorithms for the computer simulation of two-dimensional projections from structures determined by dividing surfaces , 1992 .

[16]  L. Fetters,et al.  Domain Morphology of Star Block Copolymers of Polystyrene and Polyisoprene , 1975 .

[17]  Y. Mogi,et al.  Tricontinuous morphology of triblock copolymers of the ABC type , 1992 .

[18]  Edwin L. Thomas,et al.  The gyroid: A new equilibrium morphology in weakly segregated diblock copolymers , 1994 .

[19]  J. Sadoc,et al.  Periodic systems of frustrated fluid films and « bicontinuous » cubic structures in liquid crystals , 1987 .

[20]  Reinhard Nesper,et al.  How Nature Adapts Chemical Structures to Curved Surfaces , 1987 .

[21]  Joachim Frank,et al.  Electron Tomography , 1992, Springer US.

[22]  Stefan Hildebrandt,et al.  Mathematics and optimal form , 1985 .

[23]  E. Thomas,et al.  LAMELLAR DIBLOCK COPOLYMER GRAIN-BOUNDARY MORPHOLOGY .1. TWIST BOUNDARY CHARACTERIZATION , 1993 .

[24]  H. Schwarz Gesammelte mathematische Abhandlungen , 1970 .

[25]  T. McIntosh,et al.  A bicontinuous tetrahedral structure in a liquid-crystalline lipid , 1983, Nature.

[26]  H. Karcher The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions , 1989 .

[27]  S. Leibler,et al.  Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Ludwik Leibler,et al.  Morphology and Thermodynamics of Symmetric Poly(A-block-B-block-C) Triblock Copolymers , 1995 .

[29]  David M. Anderson,et al.  Periodic Surfaces of Prescribed Mean Curvature , 1987 .

[30]  Karsten Große-Brauckmann,et al.  The gyroid is embedded and has constant mean curvature companions , 1996 .

[31]  David M. Anderson,et al.  Periodic area-minimizing surfaces in block copolymers , 1988, Nature.

[32]  Edwin L. Thomas,et al.  Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology , 1986 .

[33]  Y. Matsushita,et al.  Tricontinuous Double-Diamond Structure Formed by a Styrene-Isoprene-2-Vinylpyridine Triblock Copolymer , 1994 .

[34]  J. Klinowski,et al.  The computation of the triply periodic I-WP minimal surface , 1994 .