Improved laminar specificity and sensitivity by combining SE and GE BOLD signals

[1]  Seong-Gi Kim,et al.  Whole-brain perfusion mapping in mice by dynamic BOLD MRI with transient hypoxia , 2022, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  Seong-Gi Kim,et al.  Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T , 2021, NeuroImage.

[3]  Correction: Sub-millimetre resolution laminar fMRI using Arterial Spin Labelling in humans at 7 T , 2021, PloS one.

[4]  K. Uludağ,et al.  Determining laminar neuronal activity from BOLD fMRI using a generative model , 2021, Progress in Neurobiology.

[5]  Kendrick Kay,et al.  A temporal decomposition method for identifying venous effects in task-based fMRI , 2020, Nature Methods.

[6]  K. Uludağ,et al.  Sub-millimetre resolution laminar fMRI using Arterial Spin Labelling in humans at 7 T , 2020, bioRxiv.

[7]  Kawin Setsompop,et al.  Accelerated whole‐brain perfusion imaging using a simultaneous multislice spin‐echo and gradient‐echo sequence with joint virtual coil reconstruction , 2019, Magnetic resonance in medicine.

[8]  Peter J. Molfese,et al.  Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex , 2019, Science Advances.

[9]  Martin Havlicek,et al.  A dynamical model of the laminar BOLD response , 2019, NeuroImage.

[10]  Laurentius Huber,et al.  Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex , 2018, NeuroImage.

[11]  Dimo Ivanov,et al.  Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI , 2018, Human brain mapping.

[12]  Natalia Petridou,et al.  Laminar imaging of positive and negative BOLD in human visual cortex at 7T , 2018, NeuroImage.

[13]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[14]  Klaus Scheffler,et al.  The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI , 2017, NeuroImage.

[15]  K. Uludağ,et al.  Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2 , 2017, NeuroImage.

[16]  Lars Muckli,et al.  Laminar fMRI: Applications for cognitive neuroscience , 2017, NeuroImage.

[17]  Essa Yacoub,et al.  The impact of ultra-high field MRI on cognitive and computational neuroimaging , 2017, NeuroImage.

[18]  Kâmil Uludag,et al.  Linking brain vascular physiology to hemodynamic response in ultra-high field MRI , 2017, NeuroImage.

[19]  Wietske van der Zwaag,et al.  Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function , 2017, NeuroImage.

[20]  D. Norris,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[21]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[22]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[23]  Ravi S. Menon,et al.  Phase based venous suppression in resting-state BOLD GE-fMRI , 2014, NeuroImage.

[24]  E. Hillman Coupling mechanism and significance of the BOLD signal: a status report. , 2014, Annual review of neuroscience.

[25]  Klaus Scheffler,et al.  Functional MRI in human subjects with gradient‐echo and spin‐echo EPI at 9.4 T , 2014, Magnetic resonance in medicine.

[26]  D. Kleinfeld,et al.  The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow , 2013, Nature Neuroscience.

[27]  Bruce R. Rosen,et al.  Vessel Architectural Imaging Identifies Cancer Patient Responders to Anti-angiogenic Therapy , 2013, Nature Medicine.

[28]  Felix W Wehrli,et al.  Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification , 2012, Magnetic resonance in medicine.

[29]  G. Zaharchuk,et al.  Combined spin‐ and gradient‐echo perfusion‐weighted imaging , 2012, Magnetic resonance in medicine.

[30]  S. Francis,et al.  Spatial location and strength of BOLD activation in high‐spatial‐resolution fMRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7 T , 2012, NMR in biomedicine.

[31]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[32]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[33]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[34]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[35]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[36]  Seong-Gi Kim,et al.  Lessons from fMRI about Mapping Cortical Columns , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[37]  B. Douglas Ward,et al.  A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: The finite perturber method , 2008, NeuroImage.

[38]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[39]  Seong-Gi Kim,et al.  Neural Interpretation of Blood Oxygenation Level-Dependent fMRI Maps at Submillimeter Columnar Resolution , 2007, The Journal of Neuroscience.

[40]  Essa Yacoub,et al.  Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla , 2007, NeuroImage.

[41]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[42]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[43]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[44]  R. Strecker,et al.  Vessel size imaging in humans , 2005, Magnetic resonance in medicine.

[45]  Imaging Techniques , 2004, NeuroImage.

[46]  Fuqiang Zhao,et al.  Cortical depth‐dependent gradient‐echo and spin‐echo BOLD fMRI at 9.4T , 2004, Magnetic resonance in medicine.

[47]  K. Masamoto,et al.  Successive depth variations in microvascular distribution of rat somatosensory cortex , 2004, Brain Research.

[48]  K. Uğurbil,et al.  High‐resolution, spin‐echo BOLD, and CBF fMRI at 4 and 7 T , 2002, Magnetic resonance in medicine.

[49]  Robert Turner,et al.  How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes , 2002, NeuroImage.

[50]  Ravi S. Menon Postacquisition suppression of large‐vessel BOLD signals in high‐resolution fMRI , 2002, Magnetic resonance in medicine.

[51]  Ravi S. Menon,et al.  Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI , 2001, Human brain mapping.

[52]  Keith J. Worsley,et al.  Statistical analysis of activation images , 2001 .

[53]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[54]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[55]  D. Yablonskiy,et al.  Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T  *2 , and non‐Lorentzian signal behavior , 2001, Magnetic resonance in medicine.

[56]  M. Décorps,et al.  Vessel size imaging , 2001, Magnetic resonance in medicine.

[57]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A P Pathak,et al.  Utility of simultaneously acquired gradient‐echo and spin‐echo cerebral blood volume and morphology maps in brain tumor patients , 2000, Magnetic resonance in medicine.

[59]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[60]  R W Cox,et al.  Simultaneous gradient‐echo/spin‐echo EPI of graded ischemia in human skeletal muscle , 1998, Journal of magnetic resonance imaging : JMRI.

[61]  R S Menon,et al.  Investigation of BOLD contrast in fMRI using multi‐shot EPI , 1997, NMR in biomedicine.

[62]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[63]  Adrian T. Lee,et al.  Discrimination of Large Venous Vessels in Time‐Course Spiral Blood‐Oxygen‐Level‐Dependent Magnetic‐Resonance Functional Neuroimaging , 1995, Magnetic resonance in medicine.

[64]  B. Rosen,et al.  Microscopic susceptibility variation and transverse relaxation: Theory and experiment , 1994, Magnetic resonance in medicine.

[65]  A. Kleinschmidt,et al.  Brain or veinoxygenation or flow? On signal physiology in functional MRI of human brain activation , 1994, NMR in biomedicine.

[66]  Xiaoping Hu,et al.  Potential pitfalls of functional MRI using conventional gradient‐recalled echo techniques , 1994, NMR in biomedicine.

[67]  D. Tank,et al.  4 Tesla gradient recalled echo characteristics of photic stimulation‐induced signal changes in the human primary visual cortex , 1993 .

[68]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[69]  D. Feinberg,et al.  GRASE (Gradient‐and Spin‐Echo) imaging: A novel fast MRI technique , 1991, Magnetic resonance in medicine.

[70]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[71]  David J. Heeger,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .