A Particle Migrating Randomly on a Sphere

Consider a particle moving on the surface of the unit sphere in R3 and heading towards a specific destination with a constant average speed, but subject to random deviations. The motion is modeled as a diffusion with drift restricted to the surface of the sphere. Expressions are set down for various characteristics of the process including expected travel time to a cap, the limiting distribution, the likelihood ratio and some estimates for parameters appearing in the model.

[1]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[2]  David G. Kendall,et al.  Pole‐Seeking Brownian Motion and Bird Navigation , 1974 .

[3]  G. S. Watson Statistics on Spheres , 1983 .

[4]  Paul H. Roberts,et al.  Random walk on a sphere and on a Riemannian manifold , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  K. Yosida,et al.  Brownian Motion on the Surface of the 3-Sphere , 1949 .

[6]  M. Yor,et al.  Étude asymptotique de certains mouvements browniens complexes avec drift , 1986 .

[7]  R. R. Ernst,et al.  Theory of stochastic NMR spectroscopy. Application of the ITÔ and Stratonovich calculus , 1976 .

[8]  P. Matthews Covering Problems for Brownian Motion on Spheres , 1988 .

[9]  I. G. MacKenzie,et al.  Stochastic Processes with Applications , 1992 .

[10]  H. Sussmann On the Gap Between Deterministic and Stochastic Ordinary Differential Equations , 1978 .

[11]  Geoffrey S. Watson,et al.  "Normal" Distribution Functions on Spheres and the Modified Bessel Functions , 1974 .

[12]  Daniel W. Stroock,et al.  On the growth of stochastic integrals , 1971 .

[13]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[14]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[15]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[17]  N. Bingham Random walk on spheres , 1972 .