Generation of N-qubit W states with rf SQUID qubits by adiabatic passage

A simple scheme is presented to generate N-qubit W states with rf superconducting quantum interference devices (SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to the position inaccuracy of the rf SQUID. Numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could eventually be unity with the help of dissipation.

[1]  X. L. Zhang,et al.  Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED , 2006, quant-ph/0608111.

[2]  Mang Feng,et al.  Toffoli gate originating from a single resonant interaction with cavity QED , 2006 .

[3]  K. Gao,et al.  Simple scheme for generating ann-qubitWstate in cavity QED , 2006 .

[4]  O. Gühne,et al.  Scalable multiparticle entanglement of trapped ions , 2005, Nature.

[5]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[6]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[7]  Y. Lim,et al.  Repeat-until-success linear optics distributed quantum computing. , 2005, Physical review letters.

[8]  G. Guo,et al.  Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition , 2005 .

[9]  Shi-Biao Zheng Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage , 2005 .

[10]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[11]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[12]  Chui-Ping Yang,et al.  Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. , 2004, Physical review letters.

[13]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[14]  Z. Kis,et al.  Arbitrary rotation and entanglement of flux SQUID qubits , 2003, quant-ph/0311027.

[15]  G. Rempe,et al.  Entangled-state preparation via dissipation-assisted adiabatic passages , 2003, quant-ph/0305116.

[16]  Chui-Ping Yang,et al.  Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED , 2003, 1403.4037.

[17]  H. Kimble,et al.  Efficient engineering of multiatom entanglement through single-photon detections. , 2003, Physical review letters.

[18]  M. Feng,et al.  Multipartite entangled states in coupled quantum dots and cavity QED , 2002, quant-ph/0212034.

[19]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[20]  H. Kimble,et al.  Cavity QED and quantum-information processing with "hot" trapped atoms , 2002, quant-ph/0208051.

[21]  M. Feng Quantum computing in cavity QED with cold trapped ions by bichromatic radiation , 2002 .

[22]  Guang-Can Guo,et al.  Scheme for preparation of the W state via cavity quantum electrodynamics , 2002 .

[23]  Siyuan Han,et al.  Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction , 2002, Science.

[24]  M. Plenio,et al.  Quantum-information processing in strongly detuned optical cavities , 2001, quant-ph/0111147.

[25]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[26]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[27]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[28]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[29]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[30]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[31]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[32]  Lukens,et al.  Generation of a population inversion between quantum states of a macroscopic variable. , 1996, Physical review letters.

[33]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[34]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[35]  Ou,et al.  Violation of Bell's inequality and classical probability in a two-photon correlation experiment. , 1988, Physical review letters.

[36]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[37]  Zheng-Wei Zhou,et al.  The generation of multi-atom entanglement via the detection of cavity decay , 2003 .