Photoactivatable Mussel‐Based Underwater Adhesive Proteins by an Expanded Genetic Code

Marine mussels exhibit potent underwater adhesion abilities under hostile conditions by employing 3,4‐dihydroxyphenylalanine (DOPA)‐rich mussel adhesive proteins (MAPs). However, their recombinant production is a major biotechnological challenge. Herein, a novel strategy based on genetic code expansion has been developed by engineering efficient aminoacyl‐transfer RNA synthetases (aaRSs) for the photocaged noncanonical amino acid ortho‐nitrobenzyl DOPA (ONB‐DOPA). The engineered ONB‐DOPARS enables in vivo production of MAP type 5 site‐specifically equipped with multiple instances of ONB‐DOPA to yield photocaged, spatiotemporally controlled underwater adhesives. Upon exposure to UV light, these proteins feature elevated wet adhesion properties. This concept offers new perspectives for the production of recombinant bioadhesives.

[1]  P. Gallop,et al.  Specific detection of quinoproteins by redox-cycling staining. , 1991, The Journal of biological chemistry.

[2]  Shigeyuki Yokoyama,et al.  Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion , 2003, Nature Structural Biology.

[3]  P. Schultz,et al.  Site-specific incorporation of a redox-active amino acid into proteins. , 2003, Journal of the American Chemical Society.

[4]  N. Budisa Prolegomena zum experimentellen Engineering des genetischen Codes durch Erweiterung seines Aminosäurerepertoires , 2004 .

[5]  Nediljko Budisa,et al.  Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. , 2004, Angewandte Chemie.

[6]  Peter G Schultz,et al.  A genetically encoded photocaged tyrosine. , 2006, Angewandte Chemie.

[7]  Norbert F Scherer,et al.  Single-molecule mechanics of mussel adhesion , 2006, Proceedings of the National Academy of Sciences.

[8]  Hyung Joon Cha,et al.  Practical recombinant hybrid mussel bioadhesive fp-151. , 2007, Biomaterials.

[9]  F. Roberto,et al.  Understanding Marine Mussel Adhesion , 2007, Marine Biotechnology.

[10]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[11]  P. Schultz,et al.  Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. , 2009, Angewandte Chemie.

[12]  P. Messersmith,et al.  Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. , 2010, Biomaterials.

[13]  A. Deiters,et al.  Site-specific incorporation of fluorotyrosines into proteins in Escherichia coli by photochemical disguise. , 2010, Biochemistry.

[14]  James A Van Deventer,et al.  Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. , 2010, Current opinion in chemical biology.

[15]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[16]  David Baker,et al.  De Novo Enzyme Design Using Rosetta3 , 2011, PloS one.

[17]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[18]  J. Herbert Waite,et al.  Mussel protein adhesion depends on thiol-mediated redox modulation , 2011, Nature chemical biology.

[19]  Bruce P. Lee,et al.  Mussel-Inspired Adhesives and Coatings. , 2011, Annual review of materials research.

[20]  A. Brancale,et al.  Importance of single molecular determinants in the fidelity of expanded genetic codes , 2011, Proceedings of the National Academy of Sciences.

[21]  Andreas Ebner,et al.  Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips , 2011, Bioconjugate chemistry.

[22]  D. Hwang,et al.  In vivo post‐translational modifications of recombinant mussel adhesive protein in insect cells , 2011, Biotechnology progress.

[23]  Matthew D. Schultz,et al.  RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites , 2011, Nature chemical biology.

[24]  J. Israelachvili,et al.  Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue. , 2012, Biochemistry.

[25]  N. Budisa,et al.  Performance Analysis of Orthogonal Pairs Designed for an Expanded Eukaryotic Genetic Code , 2012, PloS one.

[26]  Liang Tong,et al.  Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. , 2012, Journal of the American Chemical Society.

[27]  Alexander Deiters,et al.  Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. , 2012, Journal of the American Chemical Society.

[28]  Y. Yang,et al.  In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli , 2012, Microbial Cell Factories.

[29]  J. Waite,et al.  Mini-review: The role of redox in Dopa-mediated marine adhesion , 2012, Biofouling.

[30]  Peter G. Schultz,et al.  Genomically Recoded Organisms Expand Biological Functions , 2013, Science.

[31]  D. Söll,et al.  Upgrading protein synthesis for synthetic biology. , 2013, Nature chemical biology.

[32]  Henrik Birkedal,et al.  Self-healing mussel-inspired multi-pH-responsive hydrogels. , 2013, Biomacromolecules.

[33]  Elie Dolgin,et al.  The Sticking Point , 2013, Nature Medicine.

[34]  Byeong Hee Hwang,et al.  In vivo residue-specific dopa-incorporated engineered mussel bioglue with enhanced adhesion and water resistance. , 2014, Angewandte Chemie.

[35]  J. Chin,et al.  Genetic Encoding of Photocaged Cysteine Allows Photoactivation of TEV Protease in Live Mammalian Cells , 2014, Journal of the American Chemical Society.

[36]  E. Choi,et al.  Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials , 2015, Marine drugs.

[37]  A. Yamaguchi,et al.  Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon , 2015, Scientific Reports.

[38]  B Kollbe Ahn,et al.  High-performance mussel-inspired adhesives of reduced complexity , 2015, Nature Communications.

[39]  A. Butler,et al.  Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement , 2015, Science.

[40]  Dieter Söll,et al.  Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids , 2015, Nature Biotechnology.

[41]  Jian Yang,et al.  Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives. , 2016, Biomaterials.

[42]  G. Church,et al.  Overcoming Challenges in Engineering the Genetic Code. , 2016, Journal of molecular biology.

[43]  G. Church,et al.  Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1. , 2016, Molecular bioSystems.

[44]  E. Maywood,et al.  Genetic code expansion in the mouse brain. , 2016, Nature chemical biology.

[45]  N. Budisa,et al.  The Regioselective Synthesis of o-Nitrobenzyl DOPA Derivatives , 2017, Synthesis.