Experimental Validation of a Hybrid Electrostrictive Hydraulic Actuator Analysis

The basic operation of smart material-based hybrid electrohydraulic actuators involves high frequency bidirectional length change in an active material stack (or rod) that is converted to unidirectional motion of a hydraulic fluid by a set of valves. In this study, we present the design and measured performance of a compact hybrid actuation system driven by the single-crystal electrostrictive material PMN-32%PT. The active material was actuated at different frequencies with variations in the applied voltage, fluid bias pressure, and external load to study the effects on output velocity. The maximum actuator velocity was 330 mm/s and the corresponding flow rate was 42.5 cc/s; the blocked force of the actuator was 63 N. The results of the experiments are presented and compared with simulation data to validate a nonlinear time-domain model. Linearized equations were used to represent the active material while the inertia, viscous losses, and compressibility of the fluid were included using differential equations. Factors affecting system performance are identified and the inclusion of fluid inertia in the model is also justified.

[1]  Eric H. Anderson,et al.  SMART MATERIAL ACTUATOR WITH LONG STROKE AND HIGH POWER OUTPUT , 2002 .

[2]  C. Liang,et al.  Electro-mechanical impedance modeling of active material systems , 1996 .

[3]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[4]  Inderjit Chopra,et al.  Design and Development of a High Pumping Frequency Piezoelectric-Hydraulic Hybrid Actuator , 2003 .

[5]  Anirban Chaudhuri,et al.  Scaling-Up Issues With a Magnetostrictive-Hydraulic Pump , 2006 .

[6]  James H. Goldie,et al.  Magnetostrictive water pump , 1998, Smart Structures.

[7]  Christopher S. Lynch,et al.  Piezoelectric Hydraulic Pump System Dynamic Model , 2001 .

[8]  Harley H. Cudney,et al.  Modeling and testing of a piezohydraulic actuation system , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  K. W. Wang,et al.  Dual-Stack Piezoelectric Device with Bidirectional Actuation and Improved Performance , 2004 .

[10]  Ahmad Safari,et al.  Development and Electromechanical Properties of Multimaterial Piezoelectric and Electrostrictive PMN-PT Monomorph Actuators , 2005 .

[11]  Ernesto E. Galloni,et al.  Influence of the mass of the spring on its static and dynamic effects , 1979 .

[12]  K. W. Wang,et al.  Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions , 2009 .

[13]  Bing Zhang,et al.  Performance Modeling of a Piezo-Hydraulic Actuator , 2003 .

[14]  Anirban Chaudhuri,et al.  Unsteady Fluid Flow in Hybrid Hydraulic Actuators , 2009 .

[15]  Anirban Chaudhuri,et al.  Design, test and model of a hybrid magnetostrictive hydraulic actuator , 2009 .

[16]  Ernest O. Doebelin,et al.  Systems Modeling and Response: Theoretical and Experimental Approaches , 1980 .

[17]  Donald J. Leo,et al.  Efficiency of Frequency-Rectified Piezohydraulic and Piezopneumatic Actuation , 2000, Adaptive Structures and Material Systems.

[18]  Victor Giurgiutiu,et al.  Design of displacement-amplified induced-strain actuators for maximum energy output , 1997 .

[19]  Anirban Chaudhuri,et al.  Blocked force and free displacement characterization of PMN-32%PT stacks , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[20]  Marcelo J. Dapino,et al.  Smart Material Electrohydrostatic Actuator for Intelligent Transportation Systems , 2006 .

[21]  Norman M. Wereley,et al.  Comparison of Piezoelectric, Magnetostrictive, and Electrostrictive Hybrid Hydraulic Actuators , 2007 .

[22]  Anirban Chaudhuri,et al.  A magnetorheological actuation system: test and model , 2008 .

[23]  H. Wurmus,et al.  Analysis of self-heating phenomenon of piezoelectric microcomponents actuated harmonically , 2002 .

[24]  Anirban Chaudhuri,et al.  Dynamic Model of a Hybrid Hydraulic Actuator Utilizing Different Smart Materials , 2007 .

[25]  克信 小西,et al.  圧電素子を動力源とする油圧式アクチュエータに関する研究 : 第1報,圧電ポンプの試作とその最大出力の検討 , 1993 .

[26]  Dean Karnopp,et al.  Computer simulation of stick-slip friction in mechanical dynamic systems , 1985 .

[27]  Siu Wing Or,et al.  Design of a Piezoelectric-hydraulic Pump with Active Valves , 2004 .

[28]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[29]  Eric H. Anderson,et al.  Development of Smart Material-Hydraulic Pumps and Actuators , 2006 .

[30]  Anirban Chaudhuri,et al.  Design and Testing of a PMN-PT Based Compact Hybrid Actuator , 2008 .

[31]  Victor Giurgiutiu,et al.  Energy-Based Comparison of Solid-State Induced-Strain Actuators , 1996 .

[32]  Jin-Hyeong Yoo,et al.  Performance of a Magnetorheological Hydraulic Power Actuation System , 2004 .

[33]  F. White Viscous Fluid Flow , 1974 .

[34]  Wesley S. Hackenberger,et al.  High performance single crystal piezoelectrics: applications and issues , 2002 .

[35]  Eric H. Anderson,et al.  DESIGN MODEL FOR PIEZOHYDRAULIC ACTUATORS , 2003 .

[36]  Marcelo J. Dapino,et al.  Magnetorheological Valve for Hybrid Electrohydrostatic Actuation , 2007 .

[37]  M. Vilkko,et al.  Self heating of piezoelectric actuators: measurement and compensation , 2004, Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004..

[38]  Keith Bridger,et al.  High-pressure magnetostrictive pump development: a comparison of prototype and modeled performance , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[39]  Donald J. Leo,et al.  Performance modeling of a piezohydraulic actuation system with active valves , 2005 .

[40]  Norman M. Wereley,et al.  A Magnetorheological Piezohydraulic Actuator , 2005 .

[41]  Harley H. Cudney,et al.  Compact piezohydraulic actuation system , 2000, Smart Structures.

[42]  Amos Ullmann,et al.  The piezoelectric valve-less pump - improved dynamic model , 2002 .

[43]  Gerald T. Montague,et al.  Electromechanical modeling of hybrid piezohydraulic actuator system for active vibration control , 1997 .

[44]  Tom B. Y. Lai,et al.  Breakaway frictions of dynamic O-rings in mechanical seals , 1993 .

[45]  Michael Sivak,et al.  The effect of the mass of the center spring in one‐dimensional coupled harmonic oscillators , 1988 .

[46]  Inderjit Chopra,et al.  Design and testing of a bidirectional magnetostrictive-hydraulic hybrid actuator , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[47]  Athipong Ngamjarurojana,et al.  Uniaxial stress dependence of ferroelectric properties of xPMN-(1–x)PZT ceramic systems , 2005 .

[48]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[49]  Christopher S. Lynch,et al.  Piezoelectric Hydraulic Pump Development , 2000 .

[50]  Inderjit Chopra,et al.  Investigation of the Dynamic Characteristics of a Piezohydraulic Actuator , 2005 .

[51]  R. Blevins,et al.  Formulas for natural frequency and mode shape , 1984 .

[52]  Anirban Chaudhuri,et al.  Self-contained hybrid electro-hydraulic actuators using magnetostrictive and electrostrictive materials , 2008 .

[53]  Christopher S. Lynch,et al.  Piezoelectric hydraulic pump , 1999, Smart Structures.