Host galaxy colour gradients and accretion disc obscuration in AEGIS z ∼ 1 X-ray-selected active galactic nuclei

We describe the effect of active galactic nucleus (AGN) light on host galaxy optical and UV-optical colours, as determined from X-ray-selected AGN host galaxies at z ∼ 1, and compare the AGN host galaxy colours to those of a control sample matched to the AGN sample in both redshift and stellar mass. We identify as X-ray-selected AGNs 8.7 +4 ―3 per cent of the red-sequence control galaxies, 9.8 ± 3 per cent of the blue-cloud control galaxies and 14.7 +4 ―3 per cent of the green-valley control galaxies. The nuclear colours of AGN hosts are generally bluer than their outer colours, while the control galaxies exhibit redder nuclei. AGNs in blue-cloud host galaxies experience less X-ray obscuration, while AGNs in red-sequence hosts have more, which is the reverse of what is expected from general considerations of the interstellar medium. Outer and integrated colours of AGN hosts generally agree with the control galaxies, regardless of X-ray obscuration, but the nuclear colours of unobscured AGNs are typically much bluer, especially for X-ray luminous objects. Visible point sources are seen in many of these, indicating that the nuclear colours have been contaminated by AGN light and that obscuration of the X-ray radiation and visible light are therefore highly correlated. Red AGN hosts are typically slightly bluer than red-sequence control galaxies, which suggests that their stellar populations are slightly younger. We compare these colour data to current models of AGN formation. The unexpected trend of less X-ray obscuration in blue-cloud galaxies and more in red-sequence galaxies is problematic for all AGN feedback models, in which gas and dust is thought to be removed as star formation shuts down. A second class of models involving radiative instabilities in hot gas is more promising for red-sequence AGNs but predicts a larger number of point sources in red-sequence AGNs than is observed. Regardless, it appears that multiple AGN models are necessary to explain the varied AGN host properties discussed in the current work. Finally, we find that integrated optical and UV - optical colours are not strongly affected by X-ray-selected AGNs except in rare cases (< 10 per cent), where the AGN is very luminous, unobscured and/or visible as a point source.

[1]  M. L. N. Ashby,et al.  The evolution of the hard X-ray luminosity function of AGN , 2009, 0910.1141.

[2]  T. Jeltema,et al.  Groups of galaxies in AEGIS: the 200-ks Chandra extended X-ray source catalogue , 2009, 0907.1903.

[3]  A. Coil,et al.  Host galaxy morphologies of X-ray selected AGN: assessing the significance of different black hole fuelling mechanisms to the accretion density of the Universe at z∼ 1. , 2009, 0904.3747.

[4]  B. Weiner,et al.  AEGIS: THE CLUSTERING OF X-RAY ACTIVE GALACTIC NUCLEUS RELATIVE TO GALAXIES AT z ∼ 1 , 2009, 0902.0363.

[5]  B. Garilli,et al.  ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI , 2008, 0810.3653.

[6]  A. Georgakakis,et al.  AEGIS-X: THE CHANDRA DEEP SURVEY OF THE EXTENDED GROTH STRIP , 2008, 0809.1349.

[7]  Pittsburgh,et al.  X-ray selected AGN in groups at redshifts z≈ 1 , 2008, 0807.2240.

[8]  C. Conselice,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES AT Z=1.4 , 2022 .

[9]  J. Lotz,et al.  AEGIS: THE NATURE OF THE HOST GALAXIES OF LOW-IONIZATION OUTFLOWS AT z < 0.6 , 2008, 0804.4312.

[10]  G. Rieke,et al.  AEGIS: Radio and Mid-Infrared Selection of Obscured AGN Candidates , 2008, 0802.1191.

[11]  J. Newman,et al.  The role of AGN in the colour transformation of galaxies at redshifts z≈ 1 , 2008, 0801.2160.

[12]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[13]  C. Conselice,et al.  submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 AEGIS: NEW EVIDENCE LINKING ACTIVE GALACTIC NUCLEI TO THE QUENCHING OF STAR FORMATION , 2022 .

[14]  K. Schawinski,et al.  Observational evidence for AGN feedback in early-type galaxies , 2007, 0709.3015.

[15]  U. Patras,et al.  Optical colours of AGN in the extended Chandra deep field South: obscured black holes in early type galaxies , 2007, 0708.3294.

[16]  Laboratoire d'Astrophysique de Marseille,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties , 2007, 0706.3938.

[17]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[18]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. II. Formation of Red Ellipticals , 2007, 0706.1246.

[19]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[20]  J. Newman,et al.  AEGIS: The Environment of X-Ray Sources at z ≈ 1 , 2007 .

[21]  A. Szalay,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. III. Constraints on Evolution from the Blue to the Red Sequence , 2007, astro-ph/0703281.

[22]  J. Ostriker,et al.  Radiative Feedback from Massive Black Holes in Elliptical Galaxies: AGN Flaring and Central Starburst Fueled by Recycled Gas , 2007, astro-ph/0703057.

[23]  Caltech,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[24]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[25]  B. Weiner,et al.  The Stellar Mass Tully-Fisher Relation to z = 1.2 from AEGIS , 2006, astro-ph/0702643.

[26]  G. Rieke,et al.  AEGIS: Infrared Spectral Energy Distributions of MIPS 70 μm-selected Sources , 2006, astro-ph/0611735.

[27]  A. C. Phillips,et al.  AEGIS: Extinction and Star Formation Tracers from Line Emission , 2006, The Astrophysical Journal.

[28]  D. Elbaz,et al.  Far-Infrared Characterization of an Ultraluminous Starburst Associated with a Massively Accreting Black Hole at z = 1.15 , 2006, astro-ph/0609466.

[29]  A. Szalay,et al.  Ongoing Formation of Bulges and Black Holes in the Local Universe: New Insights from GALEX , 2006, astro-ph/0609436.

[30]  L. Cowie,et al.  The Microjansky Radio Galaxy Population , 2006, astro-ph/0609374.

[31]  C. Conselice,et al.  AEGIS: Infrared Spectroscopy of an Infrared-luminous Lyman Break Galaxy at z = 3.01 , 2006, astro-ph/0608456.

[32]  C. Conselice,et al.  AEGIS: A Panchromatic Study of IRAC-selected Extremely Red Objects with Confirmed Spectroscopic Redshifts , 2006, astro-ph/0608447.

[33]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[34]  C. Conselice,et al.  AEGIS: Galaxy Spectral Energy Distributions from the X-Ray to Radio , 2006, astro-ph/0608378.

[35]  C. Conselice,et al.  The DEEP2 Galaxy Redshift Survey: AEGIS Observations of a Dual AGN at z = 0.7 , 2006, astro-ph/0608380.

[36]  A. Coil,et al.  AEGIS: Chandra Observation of DEEP2 Galaxy Groups and Clusters , 2006, astro-ph/0608382.

[37]  B. Weiner,et al.  AEGIS: Host Galaxy Morphologies of X-Ray-selected and Infrared-selected Active Galactic Nuclei at 0.2 ≤ z < 1.2 , 2006 .

[38]  B. Weiner,et al.  AEGIS: Host Galaxy Morphologies of X-ray and Infrared-selected AGN at 0.2 , 2006, astro-ph/0608381.

[39]  E. L. Wright,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[40]  C. Conselice,et al.  AEGIS: Enhancement of Dust-enshrouded Star Formation in Close Galaxy Pairs and Merging Galaxies up to z ~ 1 , 2006, astro-ph/0607272.

[41]  J. Newman,et al.  AEGIS: The Color-Magnitude Relation for X-Ray-selected Active Galactic Nuclei , 2006, astro-ph/0607270.

[42]  C. Conselice,et al.  AEGIS20: A Radio Survey of the Extended Groth Strip , 2006, astro-ph/0607271.

[43]  A. Hopkins,et al.  A Strong-Lens Survey in AEGIS: The Influence of Large-Scale Structure , 2006, astro-ph/0607239.

[44]  C. Conselice,et al.  AEGIS: The Diversity of Bright Near-IR-selected Distant Red Galaxies , 2006, astro-ph/0607242.

[45]  J. L. Donley,et al.  Why X-Ray-selected Active Galactic Nuclei Appear Optically Dull , 2006 .

[46]  G. Rieke,et al.  Why X-ray--Selected AGN Appear Optically Dull , 2006, astro-ph/0603313.

[47]  A. Georgakakis,et al.  Red active galactic nuclei in XMM–Newton/Sloan Digital Sky Survey fields , 2006 .

[48]  P. Salucci,et al.  A physical model for co-evolution of QSOs and of their spheroidal hosts , 2006, astro-ph/0602257.

[49]  A. Dekel,et al.  Modelling the galaxy bimodality: shutdown above a critical halo mass , 2006, astro-ph/0601295.

[50]  G. Rieke,et al.  Mid-Infrared Properties of X-Ray Sources in the Extended Groth Strip , 2005, astro-ph/0512618.

[51]  J. Newman,et al.  On the Origin of [O II] Emission in Red-Sequence and Poststarburst Galaxies , 2005, astro-ph/0512446.

[52]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[53]  A. Georgakakis,et al.  Red AGN in XMM-Newton/SDSS fields , 2005, astro-ph/0511317.

[54]  R. Bouwens,et al.  AGN Feedback Causes Downsizing , 2005, astro-ph/0511116.

[55]  P. Hopkins,et al.  Determining the Properties and Evolution of Red Galaxies from the Quasar Luminosity Function , 2005, astro-ph/0508167.

[56]  S. Veilleux,et al.  A Chandra X-Ray Survey of Ultraluminous Infrared Galaxies , 2005, astro-ph/0508112.

[57]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[58]  J. L. Donley,et al.  Unveiling a Population of AGNs Not Detected in X-Rays , 2005, astro-ph/0507676.

[59]  S. Ravindranath,et al.  AGN Host Galaxies at z ~ 0.4-1.3: Bulge-dominated and Lacking Merger-AGN Connection , 2005, astro-ph/0507091.

[60]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[61]  A. Connolly,et al.  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[62]  P. Hopkins,et al.  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[63]  S. Serjeant,et al.  Sloan Digital Sky Survey Quasars in the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) ELAIS N1 Field: Properties and Spectral Energy Distributions , 2005 .

[64]  T. D. Matteo,et al.  A Physical Model for the Origin of Quasar Lifetimes , 2005, astro-ph/0502241.

[65]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[66]  Caltech,et al.  X-ray properties of UV-selected star-forming galaxies at z ∼ 1 in the Hubble Deep Field North , 2005, astro-ph/0501411.

[67]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[68]  R. Bouwens,et al.  The DEEP Groth Strip Survey. VIII. The Evolution of Luminous Field Bulges at Redshift z ∼ 1 , 2004, astro-ph/0412004.

[69]  D. Schiminovich,et al.  New Constraints on the Star Formation Histories and Dust Attenuation of Galaxies in the Local Universe from GALEX , 2004, astro-ph/0411354.

[70]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[71]  P. Capak,et al.  The Cosmic Evolution of Hard X-Ray-selected Active Galactic Nuclei , 2004, astro-ph/0410527.

[72]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[73]  Christian Wolf,et al.  Colors of Active Galactic Nucleus Host Galaxies at 0.5 < z < 1.1 from the GEMS Survey , 2004 .

[74]  J. Rhodes,et al.  A deep Chandra survey of the Groth Strip - I. The X-ray data , 2004, astro-ph/0410149.

[75]  J. Silverman,et al.  Hard X-Ray-emitting Active Galactic Nuclei Selected by the Chandra Multiwavelength Project , 2004, astro-ph/0409337.

[76]  F. Masci,et al.  Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey , 2004, astro-ph/0405604.

[77]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[78]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[79]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[80]  L. Kewley,et al.  Hubble Space Telescope Imaging in the Chandra Deep Field-South. III. Quantitative Morphology of the 1 Million Second Chandra Counterparts and Comparison with the Field Population , 2003, astro-ph/0309041.

[81]  H. Rix,et al.  GEMS Imaging of Red-Sequence Galaxies at ∼ 0.7: Dusty or Old? , 2003, astro-ph/0308272.

[82]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[83]  Australian National University,et al.  Radio-Excess IRAS Galaxies: PMN/FSC Sample Selection , 2003, astro-ph/0306573.

[84]  Puragra Guhathakurta,et al.  Discoveries and Research Prospects from 6- to 10-Meter-Class Telescopes II , 2003 .

[85]  Garching,et al.  A deep VLA survey at 6 cm in the Lockman Hole , 2002, astro-ph/0211625.

[86]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[87]  C. Boisson,et al.  Host galaxies of AGN , 2001, astro-ph/0111331.

[88]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[89]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[90]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[91]  K. Nandra,et al.  GINGA observations of the X-ray spectra of Seyfert galaxies. , 1994 .

[92]  G. Fasano,et al.  A multidimensional version of the Kolmogorov–Smirnov test , 1987 .

[93]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[94]  B. Weiner,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[95]  K. Jahnke,et al.  Colors of Agn Host Galaxies at 0.5 < Z < 1.1 from Gems , 2008 .

[96]  A. Szalay,et al.  GALAXY LUMINOSITY FUNCTIONS TO Z ∼ 1: DEEP2 VS. COMBO-17 AND IMPLICATIONS FOR RED GALAXY FORMATION 1 , 2008 .

[97]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[98]  G. R. ieke,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 6/22/04 UNVEILING A POPULATION OF X-RAY NON-DETECTED AGN , 2005 .

[99]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[100]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .