k‐symmetric AKS systems and flat immersions into spheres

We define a large class of integrable nonlinear PDEs, k‐symmetric AKS systems, with solutions that evolve on finite‐dimensional subalgebras of loop algebras and linearize on an associated algebraic curve. We prove that periodicity of the associated algebraic data implies a type of quasiperiodicity for the solution, and show that the problem of isometrically immersing n dimensional Euclidean space into a sphere of dimension 2n – 1 can be addressed via this scheme, producing infinitely many real analytic solutions.

[1]  C. Terng,et al.  The submanifold geometries associated to Grassmannian systems , 2000, math/0006216.

[2]  Karen Uhlenbeck,et al.  Bäcklund transformations and loop group actions , 1998, math/9805074.

[3]  J. Dorfmeister,et al.  Weierstrass type representation of harmonic maps into symmetric spaces , 1998 .

[4]  Jiri Dadok,et al.  On embedded flat surfaces inS3 , 1997 .

[5]  Chuu-Lian Terng,et al.  Soliton equations and differential geometry , 1997 .

[6]  F. Pedit,et al.  Curved flats in symmetric spaces , 1995, dg-ga/9507001.

[7]  F. Pedit,et al.  Isometric immersions of space forms and soliton theory , 1995, dg-ga/9503010.

[8]  F.,et al.  Harmonic Maps via Adler{kostant{symes Theory , 1994 .

[9]  U. Pinkall,et al.  Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras , 1993 .

[10]  U. Pinkall,et al.  Minimal tori in S4. , 1992 .

[11]  J. Weiner Flat Tori in S3 and Their Gauss Maps , 1991 .

[12]  Ulrich Pinkall,et al.  On the classification of constant mean curvature tori , 1989 .

[13]  Karen K. Uhlenbeck Harmonic maps into Lie groups: classical solutions of the chiral model , 1989 .

[14]  Yoshihisa Kitagawa Periodicity of the asymptotic curves on flat tori in $S^{3}$ , 1988 .

[15]  P. Griffiths LINEARIZING FLOWS AND A COHOMOLOGICAL INTERPRETATION OF LAX EQUATIONS , 1985 .

[16]  K. Tenenblat Bäcklund's theorem for submanifolds of space forms and a generalized wave equation , 1985 .

[17]  P. Moerbeke,et al.  Completely Integrable Systems, Euclidean Lie-algebras, and Curves , 1980 .

[18]  P. Moerbeke,et al.  Linearization of Hamiltonian systems, Jacobi varieties and representation theory☆ , 1980 .

[19]  William W. Symes,et al.  Systems of Toda type, inverse spectral problems, and representation theory , 1980 .

[20]  B. Kostant,et al.  The solution to a generalized Toda lattice and representation theory , 1979 .

[21]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[22]  J. Moore Isometric immersions of space forms in space forms. , 1972 .

[23]  L. Bianchi Sulle superficie a curvatura nulla in geometria ellittica , 1896 .