Uniqueness of weak solutions in critical space of the 3‐D time‐dependent Ginzburg‐Landau equations for superconductivity

We prove the uniqueness of weak solutions of the 3-D time-dependent Ginzburg-Landau equations for super-conductivity with initial data (ψ0, A0)∈ L2 under the hypothesis that (ψ, A) ∈ Ls(0, T; Lr,∞) ×(0, T; with Coulomb gauge for any (r, s) and satisfying + = 1, + = 1, ≥ , ≥ and 3 < r ≤ 6, 3 < ≤ ∞. Here Lr,∞ ≡ is the Lorentz space. As an application, we prove a uniqueness result with periodic boundary condition when ψ0 ∈ , A0 ∈ L3 (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Song Jiang,et al.  Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity , 2003, Appl. Math. Lett..

[2]  Zhiming Chen,et al.  Global classical solutions to a non-isothermal dynamical ginzburg-landau model in superconductivity , 1997 .

[3]  Jin Liang,et al.  THE REGULARITY OF SOLUTIONS FOR THE CURL BOUNDARY PROBLEMS AND GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL , 1995 .

[4]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[5]  Tang Qi,et al.  On an evolutionary system of ginzburg-landau equations with fixed total magnetic flux , 1995 .

[6]  Daniel Phillips,et al.  On the analysis of a non-isothermal model for superconductivity , 2004, European Journal of Applied Mathematics.

[7]  Mei-Qin Zhan Well-posedness of phase-lock equations of superconductivity , 2005, Appl. Math. Lett..

[8]  Hyunseok Kim,et al.  A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier-Stokes Equations , 2006, SIAM J. Math. Anal..

[9]  Shouhong Wang,et al.  Time dependent Ginzburg-Landau equations of superconductivity , 1995 .

[10]  Zhiming Chen,et al.  Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model , 1998 .

[11]  R. Danchin LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .

[12]  H. Kozono,et al.  Exterior problem for the stationary Navier-Stokes equations in the Lorentz space , 1998 .

[13]  Qiang Du,et al.  Global existence and uniqueness of solutions of the time-dependent ginzburg-landau model for superconductivity , 1994 .

[14]  Zhiming Chen,et al.  On a non-stationary Ginzburg–Landau superconductivity model , 1993 .