Radon transform inversion based on harmonic analysis of the Euclidean motion group
暂无分享,去创建一个
[1] Gregory S. Chirikjian,et al. Algorithms for Fast Convolutions on Motion Groups , 2000 .
[2] Can Evren Yarman,et al. Radon transform inversion via Wiener filtering over the Euclidean motion group , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).
[3] Frank Natterer,et al. Numerical methods in tomography , 1999, Acta Numerica.
[4] M. Sugiura. Unitary Representations and Harmonic Analysis , 1990 .
[5] J. Coyle. Inverse Problems , 2004 .
[6] S. Helgason. The Radon Transform , 1980 .
[7] A. Cormack. Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .
[8] S. Deans. The Radon Transform and Some of Its Applications , 1983 .
[9] C. Chapman,et al. The circular harmonic Radon transform , 1986 .
[10] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[11] David A. Pintsov. Invariant pattern recognition, symmetry, and Radon transforms , 1989 .
[12] Sean S. B. Moore,et al. FFTs for the 2-Sphere-Improvements and Variations , 1996 .
[13] Ieee Acoustics,et al. IEEE Transactions on Acoustics, Speech, and Signal Processing , 1974 .