First Order Theories of Some Lattices of Open Sets

We show that the first order theory of the lattice of open sets in some natural topological spaces is $m$-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., $\mathbb{R}^n$, $n\geq1$, and the domain $P\omega$) this theory is $m$-equivalent to first order arithmetic.

[1]  Yuri L. Ershov,et al.  Theory of Numberings , 1999, Handbook of Computability Theory.

[2]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[3]  Matthew de Brecht Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..

[4]  Victor L. Selivanov,et al.  Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..

[5]  J. Ersov Theorie der Numerierungen II , 1973 .

[6]  Victor L. Selivanov Towards the Effective Descriptive Set Theory , 2015, CiE.

[7]  André Nies Effectively dense Boolean algebras and their applications , 2000 .

[8]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[9]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[10]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[11]  Victor L. Selivanov,et al.  On the Lattices of Effectively Open Sets , 2016, CiE.

[12]  Victor L. Selivanov,et al.  Total Representations , 2013, Log. Methods Comput. Sci..

[13]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[14]  Benjamin Naumann,et al.  Classical Descriptive Set Theory , 2016 .

[15]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[16]  A. Grzegorczyk Undecidability of Some Topological Theories , 1951 .

[17]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[18]  Anil Nerode,et al.  Reducibility orderings: Theories, definability and automorphisms☆ , 1980 .

[19]  C. G. Jockusch,et al.  First order topology , 1977 .

[20]  Andre Nies,et al.  Coding Methods in Computability Theory and Complexity Theory , 2013, 1308.6399.

[21]  R. Soare Recursively enumerable sets and degrees , 1987 .

[22]  Yu. L. Ershov Computable functionals of finite types , 1972 .

[23]  MARGARITA KOROVINA,et al.  The Uniformity Principle for -definability , 2017 .

[24]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[25]  André Nies,et al.  Definability in the Recursively Enumerable Degrees , 1996, Bulletin of Symbolic Logic.

[26]  R. Schindler Descriptive Set Theory , 2014 .